
Automatic synchronization of RDF graphs
representing ontologies and Wikibase instances

Alejandro González Hevia1[0000−0003−1394−5073], Guillermo Facundo
Colunga1[0000−0003−1283−2763], Emilio Rubiera Azcona1[0000−0002−0292−9177],

and Jose Emilio Labra Gayo1[0000−0001−8907−5348]

WESO Research Group, University of Oviedo, Spain
{uo251513 uo38239 uo236856 labra}@uniovi.es

Abstract. Version control systems provide ways to ease collaboratively
working on a set of source files. Due to the nature of RDF models that
represent ontologies, there is a clear benefit on using those kinds of sys-
tems, and many well-known datasets and vocabularies are already being
worked on collaboratively. However, there are domain experts who could
provide feedback and add new knowledge to the data, but do not know
how to work with version control systems or with RDF files directly.
Wikibase provides a human-friendly interface with an underlying Linked
Data model, and can be used as a publication service for the data where
those experts can easily browse and add their knowledge. In this paper,
we propose a system that automatically synchronizes RDF files hosted
in a version control system with a Wikibase instance. We describe the
system from an architectural point of view, and explain the main com-
ponents needed for the synchronization of data. Some of the challenges
for an effective synchronization of RDF files with Wikibase are also ad-
dressed. This system is currently being used as part of the Hércules
project to synchronize a research ecosystem ontology with a Wikibase
instance.

Keywords: wikibase · RDF synchronization · RDF diff · wikidata ·
ontology

1 Introduction

Version Control Systems (VCS) have been used by software developers to facil-
itate the process of working collaboratively on a set of source files. Developers
can greatly benefit from the discussion of individual changes and the establish-
ment of an acceptance workflow. Due to the nature of RDF models representing
ontologies, they are dynamic entities which may change as a consequence of
different reasons[6]:

– Changes in the conceptualization of concepts.
– Appearance of new information about concepts.
– Changes in the domain being described.



2 A. González Hevia et al.

This makes RDF files a perfect fit for use with version control systems. How-
ever, some domain experts may not know how to work with Version Control
Systems or with RDF files directly, but could still contribute useful informa-
tion to the ontology creation and conceptualization. These users can work on
an easy-to-use RDF browsing and publication service like Wikidata, where they
can make modifications to the underlying content through a web interface. The
contents of both the VCS and the publication service need to be synchronized,
so both ontology engineers and domain experts can contribute to the growth
and evolution of the ontology.

In this paper we propose a synchronization system between RDF files, which
are hosted on GitHub, and a Wikibase instance. As part of the Hércules project1,
we have implemented this system and it is being used to synchronize an ontology
which represents the research ecosystem2 with a custom Wikibase instance. This
instance is not publicly accessible but we have deployed a public copy at https:
//herc-core.wiki.opencura.com. The system works in the GitHub to Wikibase
direction at the moment, but we are working on addressing the synchronization
from Wikibase to Github in the future.

We have structured this paper as follows: we will start by briefly defining
some of the technologies used by the synchronization system and related work.
In section 4, we will give an overview of the synchronization system from an
architectural point of view. After this, we will illustrate the flow and operations
made on the data in section 5. In section 6, we will go over some of the func-
tionality that we are planning to add as future work to the system. Finally, we
will give our final conclusions in section 7.

2 Background

2.1 Wikibase

Wikibase is an open-source knowledge base software-suite which drives Wiki-
data, and makes collaboration easy for humans and machines alike. Since it uses
MediaWiki as its front-end, it provides users with an intuitive and easy to use
interface to interact with the underlying data model, based on semantic web
concepts[5].

The underlying infrastructure of Wikibase contains a SPARQL engine, which
makes use of a BlazeGraph triplestore and allows the exposure of the data within
Wikibase as Linked Data. Content negotiation mechanisms are also set up, so
a Wikibase entity can be either viewed through the default HTML format dis-
played by the browser, or in other multiple formats, such as .json, .rdf, .ttl or
.nt.

Therefore, one of the main strengths of Wikibase is that users working di-
rectly with it may not know the details of the underlying data model and infras-
tructure, but can still collaboratively work with the linked data and add new
information to it.
1 https://www.um.es/web/hercules/
2 This ontology can be accessed at https://github.com/weso/hercules-ontology

https://herc-core.wiki.opencura.com
https://herc-core.wiki.opencura.com
https://www.um.es/web/hercules/
https://github.com/weso/hercules-ontology


Automatic synchronization of RDF graphs and Wikibase instances 3

2.2 Wikidata Integrator (WDI)

Wikidata Integrator is a Python library that serves as a wrapper around the
Wikidata API, providing tools to programmatically modify its contents. It con-
sists of the common code modules from a series of computer programs that up-
loaded biomedical knowledge to Wikidata, and attempts to simplify the process
of creating Wikidata bots [7]. The synchronization system that we have pro-
posed relies on WDI to easily communicate with the Wikibase API and update
its underlying contents.

2.3 WebHooks

WebHooks are POST requests that are sent to a given URL, which can be con-
figured by the user, in response to a certain event that has occurred [4]. GitHub
provides support for WebHooks3, which can be triggered when certain GitHub-
related events occur. This allows external systems to subscribe to certain events
from organizations or repositories, and to act accordingly when they receive no-
tifications from them. Our system makes use of WebHooks to receive information
about the RDF files when a new release is made on the repository where they
are hosted.

3 Related work

There are several ontology editors like the popular Protégé4, which also offers a
collaborative web environment called WebProtégé5. WebProtégé provides useful
features for collaborative ontology development, like user permissions and change
history. A difference between that approach and the proposal presented in this
paper is that we can rely on GitHub project management tools like issues, re-
leases and pull requests. Furthermore, with the use of Wikibase as a publication
platform for the ontology we can also have access to the additional functionality
from the software suite defined previously. With the use of both GitHub and
Wikibase we aim to facilitate the collaboration of external contributors to the
evolution of the ontology.

The problem of making an effective and efficient diff between two given RDF
graphs has been for a long time a field of study in the Semantic Web community.
In [1], Berners Lee and Connolly give an overview on the problems that may arise
when comparing two RDF graphs and obtaining their diff. To avoid arbitrary
choices in the serialization of RDF graphs - specially regarding blank nodes -
there is a need to perform a canonicalization algorithm on the given graphs.

The W3C Semantic Web wiki maintains a list with various tools that can be
used to compare RDF graphs6. In our system we are using one of those tools,

3 https://developer.github.com/webhooks/
4 https://protege.stanford.edu/
5 https://webprotege.stanford.edu/
6 https://www.w3.org/2001/sw/wiki/How to diff RDF

https://developer.github.com/webhooks/
https://protege.stanford.edu/
https://webprotege.stanford.edu/
https://www.w3.org/2001/sw/wiki/How_to_diff_RDF


4 A. González Hevia et al.

RDFLib [3], to build and compare the RDF graphs obtained from the Version
Control System. RDFLib provides the method rdflib.compare, which imple-
ments a port of the RDF graph isomorphism tester made by Sean B. Palmer7,
to perform the comparison.

4 System overview

Fig. 1 shows an overview of the synchronization system presented in this paper.
The initial step is the modification of RDF files by an ontology engineer, and
the push of those changes to a VCS (in our case, GitHub). After a new release is
created, the WebHook associated with the repository is called with the changes
regarding this new release. These changes are passed to the synchronization
system, which will be in charge of updating this information to a Wikibase.

Fig. 1. Complete overview of the synchronization system.

Although the complete workflow involves the use of GitHub and WebHooks
to synchronize the content to a Wikibase, it is important to note that this is
not necessary, and the synchronization system can be invoked independently to
synchronize any given RDF data to a Wikibase8.

5 Data flow

In this section we are going to go through the flow of data and inner work-
ings of the synchronization system, from the modification of an RDF file to its
synchronization to a Wikibase.

5.1 Modifying an RDF file

The overall process begins with the modification of an RDF file. These changes
in the file may be distributed amongst many commits in the VCS. In Fig. 2 we

7 The code for this algorithm can be found at https://www.w3.org/2001/sw/
DataAccess/proto-tests/tools/rdfdiff.py

8 For instance, the UniTest Wikibase, available at https://unitest.wiki.opencura.com,
has been populated using just the synchronization system and an RDF file.

https://www.w3.org/2001/sw/DataAccess/proto-tests/tools/rdfdiff.py
https://www.w3.org/2001/sw/DataAccess/proto-tests/tools/rdfdiff.py
https://unitest.wiki.opencura.com


Automatic synchronization of RDF graphs and Wikibase instances 5

provide an example where a subset of an original file is changed multiple times.
Some new triples are added to the graph, while others are removed or modified.

Original file

:knows owl:inverseOf :isKnownBy ;

a owl:ObjectProperty

:alice :knows :bob, :carol .

Commit A

:knows owl:inverseOf :isKnownBy ;

rdfs:range :Person ;

a owl:ObjectProperty .

:alice :knows :bob, :carol ;

rdfs:label "Alice" .

Commit B

:knows owl:inverseOf :isKnownBy ;

rdfs:range :Person ;

a owl:ObjectProperty .

:alice :knows :bob, :carol ;

rdfs:label "Alice" .

Final file

:knows owl:inverseOf :isKnownBy;

rdfs:range :Person ;

a owl:ObjectProperty .

:alice :knows :bob ;

rdfs:label "Alice" .

Fig. 2. Example evolution of an RDF file.

5.2 Making a new release

After a number of commits have been performed and the administrators of the
repository decide that the new data is ready to be synchronized and published,
a new release in GitHub can be created9. After that, the WebHook will be
triggered and will notify the synchronization system with information about
this new event.

5.3 Obtaining the graph diff

Once the synchronization system has received this notification from the Web-
Hook, it will download the original and final RDF files from the repository. These
files will then be parsed as graphs using the RDFLib library, and compared to
obtain the diff between them.

5.4 Creating the synchronization operations

After the diff between the two graphs is known, the next step is the creation of
the operations that need to be executed on Wikibase to synchronize the changes.

An important step when creating the synchronization operations is to infer
the types of each resource that will be added to the Wikibase. First of all, when
synchronizing an IRI node we need to know if that node represents a Wikibase
property (Px ) or an item (Qx ) before executing any operations on the Wikibase.
Sometimes it is trivial to know when a node corresponds to a given entity type:

9 https://help.github.com/en/enterprise/2.13/user/articles/creating-releases

https://help.github.com/en/enterprise/2.13/user/articles/creating-releases


6 A. González Hevia et al.

for example, all the IRIs that are used as a predicate in an RDF triple are
properties. However, there are cases when some kind of type of inference needs
to be performed (e.g. exploring rdfs:subPropertyOf predicates in the graph to
identify the properties).

After we know which IRIs correspond to classes and properties, we also need
to know which are the ranges of the properties. When creating a new property in
Wikibase it is necessary to indicate its data type. Modifying it after its creation,
although possible, is not an expected operation and should be done with care.
When a property is used as a predicate in a triple, we rely on the type of
the object to infer the datatype of the property. If the property is not used
as a predicate in the whole graph, we also rely on the rdfs:range predicates
available for the property. There may be times when the datatype of a property
may not be inferred with the information available in the graph. For those cases,
we expect its range to be ’wikibase-item’ by default.

5.5 Performing the operations on Wikibase

Once the operations have been created, the next step is to execute them on
the target Wikibase. Since those operations provide general information to be
executed on multiple triplestores, this step also includes some Wikibase-specific
tasks:

– Handling labels, descriptions and aliases. An important aspect of the
Wikibase data model to take into account for the synchronization is its
internal entity representation10. The description of a node is composed of
the following mappings to RDF:
• Labels are defined as rdfs:label, schema:name and skos:prefLabel

predicates.
• Aliases are defined as skos:altLabel predicates.
• Descriptions are defined as schema:description predicates.

All of the predicates above have as objects language-tagged literals. When
we encounter any of those predicates in the synchronization process, they
are used as label, alias or description values for the given entity.

– Mapping datatypes. Although in the creation of synchronization opera-
tions we have already annotated the properties with their respective datatypes,
there still needs to be a mapping between those datatypes and the ones from
the Wikibase data model. For example, coordinates expressed in an RDF
file using the geo:wktLiteral datatype are mapped to the Wikibase globe

coordinate datatype, and the values from literals must be processed to fit
with the format specified by Wikibase.

– Blank nodes. Blank nodes can be defined as existential variables, repre-
senting the existence of some unnamed resource [2]. The approach taken for
the synchronization of blank nodes consists of representing each blank node
as a Wikibase item, with its label being the UID generated by rdflib in the

10 For more information, see https://bit.ly/2PBU6Fo

https://bit.ly/2PBU6Fo


Automatic synchronization of RDF graphs and Wikibase instances 7

graph canonicalization phase. However, it is important to note that the time
to canonicalize blank nodes may increase exponentially on large graphs.

– Linking entities to their original IRI. A ”same as” property is used to
link the entities synchronized to the Wikibase and their original IRI.

6 Future work

6.1 Synchronizing changes from Wikibase to the RDF files

We have seen so far the point of view of ontology engineers making changes
directly on the files in the GitHub repository and reflecting those changes on the
Wikibase system. However, the inverse direction is also possible.

An initial approach to solve this type of synchronization is illustrated in
Fig. 3. Tasks related to the inverse synchronization are marked in blue, while
other tasks already present in the system are greyed out. After the initial modifi-
cation from a domain expert has been saved, we could make use of the available
Wikibase hooks11 and notify the synchronization system with the changes made
to the item from Wikibase. After that, the system would create a new pull request
in the original repository that administrators can review before synchronizing
the new changes.

Fig. 3. Complete overview of the system with inverse synchronization functionality.

6.2 Qualifiers and references

Both qualifiers and references are important parts of the Wikibase data model:
the former allow the refinement of values from properties in a given statement,
while the latter are used to state which are the sources of a claim. Although
the synchronization of both elements is not implemented yet, we are currently
working on defining a model that can be used to synchronize them.

6.3 Support additional datatypes

Although there is already a initial mapping of XML Schema datatypes to Wik-
ibase ones, some of them are not yet mapped. To be specific, there is still no
support for external identifiers, mathematical expressions, musical notations and
lexemes.
11 https://doc.wikimedia.org/Wikibase/master/php/md docs topics hooks-js.html

https://doc.wikimedia.org/Wikibase/master/php/md_docs_topics_hooks-js.html


8 A. González Hevia et al.

7 Conclusions

In this demo paper we have presented a synchronization system between RDF
files and a Wikibase instance. The system allows to browse ontologies defined
as RDF data through the Wikibase user-friendly interface, and allows domain
experts to add knowledge to them without knowing the underlying data model.
The system is already being used as part of the Hércules project to synchronize
a research management ontology with a Wikibase, and has also been used to
populate several Wikibase instances hosted on WBStack. Notice that although
we have implemented the system to synchronize ontologies expressed as RDF, it
can also be used to synchronize any other RDF content.

However, there is still additional work that needs to be done to allow a com-
plete synchronization between the Wikibase instance and the repository where
the RDF files are stored. The complete documentation of the system from an ar-
chitectural point of view can be accessed at http://www.weso.es/hercules-sync.

Acknowledgements

The HÉRCULES Semantic University Research Data Project is backed by the
Ministry of Economy, Industry and Competitiveness with a budget of 5.462.600,00
euros with an 80% of cofinancing from the 2014-2020 ERDF Program. This work
has been partially funded by the Spanish Ministry of Economy and Competi-
tiveness (Society challenges: TIN2017-88877-R). Special thanks to Adam S. for
providing us with a WBStack account, where the final experiments of this system
were conducted.

References

1. Berners-Lee, T., Connolly, D.: Delta: an ontology for the distribution of differences
between rdf graphs. World Wide Web, http://www. w3. org/DesignIssues/Diff 4(3),
4–3 (2004)

2. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to
know about blank nodes. Journal of Web Semantics 27, 42–69 (2014)

3. Krech, D.: Rdflib: A python library for working with rdf (2006)
4. Leggetter, P.: What are webhooks and how do they enable a real-time web? (2012)
5. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the

most out of wikidata: semantic technology usage in wikipedia’s knowledge graph.
In: International Semantic Web Conference. pp. 376–394. Springer (2018)

6. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowl-
edge and information systems 6(4), 428–440 (2004)

7. Waagmeester, A., Stupp, G., Burgstaller-Muehlbacher, S., Good, B.M., Griffith,
M., Griffith, O.L., Hanspers, K., Hermjakob, H., Hudson, T.S., Hybiske, K., et al.:
Science forum: Wikidata as a knowledge graph for the life sciences. ELife 9, e52614
(2020)

http://www.weso.es/hercules-sync

	Automatic synchronization of RDF graphs representing ontologies and Wikibase instances

