
Semantic Web 0 (0) 1 1
IOS Press

XMLSchema2ShEx: Converting XML
validation to RDF validation
Herminio Garcia-Gonzalez a,∗ Jose Emilio Labra-Gayo a,∗∗

a Department of Computer Science, University of Oviedo, C/ Federico García Lorca S/N 33007

Abstract. RDF validation is a field where the Semantic Web community is currently focusing attention. In other communities,
like XML or databases, data validation and quality is considered a key part of their ecosystem. Besides, there is a recent trend to
migrate data from different sources to semantic web formats. These transformations and mappings between different technologies
have an economical and technological impact on society. In order to facilitate this transformation, we propose a set of mappings
that can be used to convert from XML Schema to Shape Expressions (ShEx)—a validation language for RDF. We also present
a prototype that implements a subset of the mappings proposed, and an example application to obtain a ShEx schema from an
XML Schema. We consider that this work and the development of other format mappings could drive to an improvement of data
interoperability due to the reduction of the technological gap.

Keywords: ShEx, XML Schema, Shape Expressions, formats mapping, data validation

1. Introduction

Data validation is a key area when normalisation
and confidence are desired. Normalisation—which can
be defined, in this context, as using an homogeneous
schema or structure across different sources of similar
information—is desired as a way of making a dataset
more reliable and even more useful to possible con-
sumers because of its standardised schema. Validation
can excel data cleansing, querying and standardisation
of datasets. In words of P.N. Fox et.al. [16]: “Proce-
dures for data validation increase the value of data
and the users’ confidence in predictions made from
them. Well-designed data management systems may
strengthen data validation itself, by providing better
estimates of expected values than were available pre-
viously.”. Therefore, validation is a key field of data
management.

XML Schema [5] was designed as a language to
make XML validation possible with more expressive-
ness than DTDs [4]. Using XML Schema developers
can define the structure, constraints and documenta-

*Email: herminiogg@gmail.com
**Email: labra@uniovi.es

tion of an XML vocabulary. Besides DTD and XML
Schema, other alternatives for XML validation (such
as Relax NG [11] and Schematron [18]) were pro-
posed.

In the Semantic Web, RDF was missing a stan-
dard constraints validation language which cover the
same features that XML Schema does for XML. Some
alternatives were OWL [17] and RDF Schema [10];
however, they do not cover completely what XML
Schema does for XML [38]. For this purpose, Shape
Expressions (ShEx) [32,33] was proposed to fulfill the
requirement of a standard constraints validation lan-
guage for RDF, and SHACL [20] (another proposed
language for RDF validation) has recently become a
W3C recommendation.

As many documents and data are persisted in XML,
the need for migration and interoperability to more
flexible data is nowadays more pressing than ever,
many authors have proposed conversions from XML to
RDF [27,12,2,6], with the goal of transforming XML
data to Semantic Web formats.

Although these conversions enable users to migrate
their data to Semantic Web, means for validating the
output data after converting XML to RDF are missing.
Therefore, we should ensure that the conversion has

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 /

been done correctly and that both versions—in differ-
ent languages—are defining the same meaning.

Conversions between XML and RDF, and between
XML Schema and ShEx are necessary to alleviate
the gap between semantic technologies and more
traditional ones (e.g., XML, JSON, CSV, relational
databases, etc.). With that in mind, providing generic
transformation tools from in-use technologies to se-
mantic technologies can enhance the migration possi-
bilities; in other words, if we can create tools that ease
the transformation and adaptation among technolo-
gies we will encourage future migrations. Although
we consider that generic approaches for some of these
conversions are not going to be valid in all cases, for
instance small companies or low budget projects can
make their point as initial or by-default transforma-
tions. Taking Text Encoding Initiative (TEI) [14] as
an example, digital humanities can take benefit from
Semantic Web approaches [37,35]. There are many
manuscripts transcribed to XML—using TEI—that
can be converted to RDF. But transcribers are hesitant
to deal with the underlying technology although they
can benefit from it [26]. Those are the cases where
generic approaches, as the one introduced here, can
offer a solution and automatic conversion of schemata
has its place when transformations are to be checked.

Taking into account what we previously exposed,
the questions that we want to address in the present
work are the following:

– RQ1: What components should have a mapping
from XML Schema to ShEx?

– RQ2: How to ensure that both schemata are
equivalent?

– RQ3: Is it possible to ensure a backwards conver-
sion in all cases?

– RQ4: Are non-deterministic schemata (i.e., am-
biguous schemata) possible to translate and vali-
date?

In this paper, we describe a solution on how to make
the conversion from XML Schema to ShEx. We de-
scribe how each element in XML Schema can be trans-
lated into ShEx. Moreover, we present a prototype that
can convert a subset of what is defined in the following
sections.

The rest of the paper is structured as follows: Sec-
tion 2 presents the background; Section 3 gives a brief
introduction to ShEx; Section 4 describes a possible set
of mappings between XML Schema and ShEx; Sec-
tion 5 presents a prototype used to validate a subset of
previously presented mappings and how this conver-

sion works against existing RDF validators; Section 6
discusses the problem of Non-Deterministic schemata
and what are the implications in this work. Finally,
Section 7 draws some conclusions and future lines of
work and improvement.

2. Background

Migration to Semantic Web technologies is a task
that has several previous works which can be di-
vided in three main categories: conversions from XML
to Semantic Web formats, conversions from XML
schemata to other schemata and conversions from
XML schemata to RDF schemata.

2.1. From XML to Semantic Web formats

Prior to schemata conversions, data migration has to
be tackled. Therefore many authors have worked on
this topic of converting from XML to Semantic Web
formats and more specifically to RDF. For this conver-
sions there are plenty of strategies that have been pro-
posed and followed by other authors.

In [27], authors describe their experience on devel-
oping this transformation for business to business in-
dustry in the case of the Semantic Mediation tools. An
XML Schema to RDF Schema transformation is per-
formed as part of the requirement of the Semantic Me-
diation tool.

In [12] a transformation between XML and RDF de-
pending on an ontology is described. This transforma-
tion takes an XML document, a mapping document
and an ontology document and makes the transforma-
tions to RDF instances compliant with the input on-
tology. XML Schema is used to describe the mapping
between it and the OWL document.

In [1], the author makes an explanation of how XML
can be converted to RDF—and vice versa—using
XML Schema as the base for the mappings. This work
is then expanded in [2] where the author tries to solve
the lift problem (the problem of how to map heteroge-
neous data sources in the same representational frame-
work) from XML to RDF and backwards by using the
Gloze mapping approach on top of Apache Jena.

In [40], the authors present a mechanism to query
XML data as RDF. Firstly, a matching from XML
Schema to RDF Schema class hierarchy is performed.
Then XML elements can be interpreted as RDF triples.
The same procedure but using DTDs is described in
[39].

/ 3

In [9], the author presents a technique for making
standard transformations between XML and RDF us-
ing XSLT. A case study in the field of astronomy is
used to illustrate the solution.

Another approach using XSLT is [36] where authors
describe a mapping mechanism using XSLT that can
be attached to schemata definition.

In [3] a transformation from RDF to other kind of
formats, including XML, is proposed using embed-
ded SPARQL into XSLT stylesheets which by means
of these extensions, could query, merge and transform
data from the Semantic Web.

In [6], authors describe XSPARQL which is a
framework that enables the transformation between
XML and RDF based on XQuery and SPARQL and
solves the disadvantages of using XSLT for these
transformations.

However, these works (except [27]) are not covering
the schemata mapping problem.

2.2. From XML schemata to other schemata

Although data migration is important, during this
process is desirable to transform the constraint rules
or schemas too. This is also a way to certify that the
transformations have been done correctly. Therefore,
many authors have proposed different techniques and
transformation from XML Schema.

In [29] a transformation from XML Schema to
JSON Schema is proposed. This transformations are
made using equivalent constraints when it is possible
and concrete transformations when no equivalent con-
straints exists.

In [31] an algorithm that converts from XML
Schemata to ER diagrams is proposed. This algorithm
(called Xere mapping) is proposed as a part of the Xere
technique to assist the integration of XML data.

In [24], the authors propose an algorithm to convert
from a relational schema to an XML Schema and two
algorithms to convert from a XML Schema to a rela-
tional schema. All these techniques preserve the struc-
ture and the semantics.

However, none of these works bring XML schemata
to Semantic Web technologies.

2.3. From XML schemata to RDF schemata

In the Semantic Web community there has been an
effort to convert XML schemata to OWL [15,34] and
to RDF Schema [27]. Moreover, when no schema is

available the transformation can be performed from
XML to OWL [7,21,30,23].

However, RDF Schema and OWL were not de-
signed as RDF validation languages. Their use of Open
World and Non-Unique Name Assumptions can pose
some difficulties to define the integrity constraints that
RDF validation languages require [38].

2.4. FHIR approach

Another approach for transformation between schemas
is to take a domain model as the main representation of
data structure and constraints and then transform be-
tween that model and other schema formats like XML
Schema, JSON Schema or ShEx. This has been the
approach followed by FHIR1. However, this technique
needs the creation of a domain model as an abstract
representation which is not the goal of our work.

2.5. RDF validation languages and its conversions

Various languages have recently been developed for
RDF validation. Shapes Constraint Language (SHACL) [20]
has been developed by the W3C Data Shapes Working
Group and Shape Expressions (ShEx) [33] is being de-
veloped by the W3C Shape Expressions Community
Group.

To the best of our knowledge, no conversion be-
tween XML Schema and ShEx/SHACL has been pro-
posed to date. This might be due to the recent intro-
duction of ShEx and SHACL.

In this paper, ShEx is used to describe the mappings
due to its compact syntax and its support for recursion
whereas in SHACL recursion depends on the imple-
mentation. However, we consider that converting the
mappings proposed in this paper to SHACL is feasible
and can be an interesting line of future work given that
it has already been accepted as a W3C recommenda-
tion and that there are some ways to simulate recursion
by target declarations or property paths.

3. Brief introduction to ShEx

ShEx was proposed as a language for RDF vali-
dation in 2014 [33]. It was one of the foundations
for the W3C Data Shapes Working Group which de-
veloped the Shapes Constraint Language (SHACL)
for the same purpose. SHACL was also inspired by

1https://www.hl7.org/fhir/

4 /

SPIN [19] and although both languages can perform
RDF validation there are some differences between
them like the support of recursion or the emphasis on
validation versus constraint checking (see chapter 7
of [22] for more details). In this paper we will focus
on ShEx because it has a well-defined semantics for
recursion [8] and its semantics are more inspired by
grammar-based formalisms like Relax NG.

ShEx syntax was inspired by Turtle, SPARQL and
Relax NG with the aim to offer a concise and easy to
use syntax. In July 2017, version 2.0 was released with
a draft community group report and the community
group is currently developing the 2.1 version.

ShEx uses shapes to group different validations as-
sociated with the same node ’type’. That is, a shape
can define how a node and its triples should be in order
to be valid. Listing 1 illustrates an example of a ShEx
shape.

PREFIX : <http://example.com/>
PREFIX schema: <http://schema.org>
PREFIX

xs: <http://www.w3.org/2001/XMLSchema#>

:PurchaseOrder {
:orderId /Order\\d{2}/ ;
schema:customer @:User ;
schema:orderDate xs:date ? ;
schema:orderedItem @:Item +

}
:Item {
schema:name xs:string ;
:quantity xs:positiveInteger OR

xs:integer MININCLUSIVE 1
}
:User {
a [schema:Person] ;
:purchaseOrder @:PurchaseOrder*

}

Listing 1: ShEx shape example

Listing 1 defines a shape with a :PurchaseOrder

type. Prefixes are defined at the beginning of the snip-
pet and use the same similar syntax as in Turtle.
Triple constraints are defined inside the shape where
a purchase order must have an orderId of type that
matches the regular expression Order\d{2}, it must
have a schema:customer which must be a node that
conforms to shape :User, a schema:orderDate whose
value must be an xs:date and can have one or more
(represented by the plus sign) schema:orderedItem

whose values must conform to the :Item shape.

The :Item shape must have a schema:name of
value string and a schema:orderQuantity of value
xs:positiveInteger, while the :User shape declares
that the values must have type schema:Person, and can
contain zero or more values of :purchaseOrder which
must conform to the :PurchaseOrder shape.

Pass validation as :PurchaseOrder
:order1 :orderId "Order23" ;
schema:customer :alice ;
schema:orderDate "2017-03-02"^^xs:date;
schema:orderedItem :item1 .
:alice a schema:Person ;

:purchaseOrder :order1 .
:item1 schema:name "Lawn" ;

:quantity 2 .

Fails validation as :PurchaseOrder
:order2 :orderId "MyOrder" ;
schema:customer :bob;
schema:orderDate 2017;
schema:orderedItem :item1.
:bob a schema:Person ;

:purchaseOrder :unknown.

Listing 2: RDF validation example

In Listing 2 there is an example of two purchase
orders defined in RDF. The first of them passes
validation and conforms to the shapes declaration
whereas :order2 fails for several reasons: the value of
:orderId does not conform to the required regular ex-
pression, the value of schema:customer does not con-
form to shape :User and the value of schema:orderDate
does not have datatype xs:date.

ShEx supports different serialization formats:

– ShExC: a concise human readable compact syn-
tax which is the one presented in previous exam-
ple.

– ShExJ: a JSON-LD syntax which is used as an
abstract syntax in the ShEx specification [32].

– ShExR: an RDF representation syntax based on
ShExJ.

ShEx defines an extension mechanism through
which users can embed portions of code written in a
programming language or SPARQL. This feature is
known as Semantic Actions and are introduced be-
tween definition of triples with the %interpreter{}%
syntax where interpreter is the name of the interpreter
to be used (e.g., js, sparql, java, etc.). See Listings 22
and 23 for Semantic Actions examples.

In this paper ShExC syntax was used because it is
easy to read and understand. The goal of this intro-

/ 5

duction was to provide a basic understanding of ShEx.
For more examples and a longer comparison between
ShEx and SHACL readers can consult [22].

4. Mappings between XML Schema and ShEx

XML Schema defines a set of elements and datatypes
for validation that need to be converted to ShEx. In
this section, we describe different XML Schema ele-
ments and a possible conversion to ShEx. All exam-
ples use the default prefix : for URIs. It is intended
to be replaced by different prefixes depending on the
required namespaces. For XML Schema elements and
datatypes xs prefix is used in the examples.

4.1. Element

Elements are treated as a triple predicate and object,
i.e., we convert them to a triple constraint whose pred-
icate is the name of the element:

XML Schema
<xs:element name="birthday" type="xs:date"/>

ShEx
:birthday xs:date ;

Listing 3: Element mapping

The name attribute is used as the fragment of the
URI in the predicate and the type is transcribed di-
rectly, as ShEx has built-in support for XML Schema
datatypes. If the ref attribute is present, the type must
be defined somewhere in the document to link the cor-
responding type or shape. When an xs:element type
is a xs:complexType, the type should be referenced
to a new shape where the xs:complexType is con-
verted (see Section 4.3 where we explain how to con-
vert xs:complexType to a shape). See Listings 3, 4 and
5 for a list of examples on how to convert an element.

XML Schema
<xs:element name="purchaseOrder"

type="PurchaseOrderType"/>

<xs:complexType name="PurchaseOrderType">
...

</xs:complexType>

ShEX
:purchaseOrder @<PurchaseOrderType> ;

Listing 4: Element mapping with linked type

XML Schema
<xs:element name="item"

minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
...

</xs:complexType>
</xs:element>

ShEx
:item @<item> * ;

Listing 5: Element mapping with nested type

4.1.1. Cardinality
Cardinality in ShEx is defined with the following

symbols: ’*’ for 0 or more repetitions, ’+’ for 1 or
more repetitions, ’?’ for 0 or 1 repetitions (optional el-
ement) or ’{m, n}’ for m to n repetitions where m is
minOccurs and n maxOccurs. As in XML Schema, the
default cardinality in ShEx is 1 for lower and upper
bounds. Therefore, transformation of minOccurs and
maxOccurs in the previously defined cardinality marks
is done as showed in Listing 6.

XML Schema
<xs:element name="nameZeroUnbounded"

type="xs:string"
minOccurs="0"
maxOccurs="unbounded">

<xs:element name="nameOneUnbounded"
type="xs:string"
minOccurs="1"
maxOccurs="unbounded">

<xs:element name="nameOptional"
type="xs:string"
minOccurs="0"
maxOccurs="1">

<xs:element name="nameFourToTen"
type="xs:string"
minOccurs="4"
maxOccurs="10">

ShEx
:nameZeroUnbounded xs:string * ;
:nameOneUnbounded xs:string + ;
:nameOptional xs:string ? ;
:nameFourToTen xs:string {4, 10} ;

Listing 6: Cardinality mapping

As presented in Listing 6, when an element has its
complex type nested the shape name will be the name

of the element.

6 /

4.2. Attribute

ShEx treats attributes like elements because it makes
no difference between an attribute and an element.
This difference is part of XML data model whereas
the RDF data model does not have the concept of at-
tributes. One possibility to transform attributes is to
use their name and type as performed with elements
(see Section 4.1). This allows better readability of the
corresponding RDF data, but limits roundtrip conver-
sions between XML to RDF and back.

4.3. ComplexType

Complex types are translated directly to ShEx
shapes. The name of the xs:complexType will be the
name of the shape to which elements can refer to (see
Listing 7 for an example). Complex types consist of
various statements so we provide a detailed transfor-
mation of each possibility in the following sections.

XML Schema
<xs:complexType name="PurchaseOrderType">

...
</xs:complexType>

ShEx
<PurchaseOrderType> {

...
}

Listing 7: Complex type mapping

4.3.1. Sequence
While sequences in XML Schema define sequential

order of elements, representing the same modeling in
ShEx is complex due to RDF graph structure. There
are several ways to represent order in RDF, the most
obvious one is using RDF lists (c.f., other ways to rep-
resent it [13,25]).

The example in Listing 8 shows how the mapping is
done for a xs:sequence using RDF lists:

XML Schema
<xs:complexType name="Address">

<xs:sequence>
<xs:element name="street"

type="xs:string"/>
<xs:element name="city"

type="xs:string"/>
<xs:element name="state"

type="xs:string"/>
<xs:element name="zip"

type="xs:decimal"/>
</xs:sequence>

</xs:complexType>

ShEx
<address> {

rdf:first @<street> ;
rdf:rest @<i1> ;

}
<i1> {

rdf:first @<city> ;
rdf:rest @<i2> ;

}
<i2> {

rdf:first @<state> ;
rdf:rest @<i3> ;

}
<i3> {

rdf:first @<zip> ;
rdf:rest [rdf:nil] ;

}
<street> {

:street xs:string ;
}
<city> {

:city xs:string ;
}
<state> {

:state xs:string ;
}
<zip> {

:zip xs:decimal ;
}

Listing 8: Sequence mapping

4.3.2. Choice
Choices in XML Schema are the disjunction opera-

tor to select between two options, for instance: choice
between two elements. This operator is supported in
ShEx using the oneOf operator (’|’). The object and
predicate of the RDF statement must be one of the
enclosed ones. Therefore, translation is performed as
shown in the snippet of Listing 9:

XML Schema
<xs:choice>

<xs:element name="name"
type="xs:string"/>

<xs:all>
<xs:element name="givenName"

type="xs:string"
maxOccurs="unbounded"/>

<xs:element name="familyName"
type="xs:string" />

</xs:all>
</xs:choice>

/ 7

ShEx
(:name xs:string |
:givenName xs:string + ;
:familyName xs:string

) ;

Listing 9: Choice mapping

4.3.3. All
While sequences are an ordered set of elements,

xs:all is instead a set of unordered elements. In-
deed, xs:all has a better representation using ShEx
elements and the transformation is simpler than the
xs:sequence one as there is no need to keep track of
the order of elements. See Listing 10 for an example.

XML Schema
<xs:all>

<xs:element name="street"
type="xs:string"/>

<xs:element name="city"
type="xs:string"/>

<xs:element name="state"
type="xs:string"/>

<xs:element name="zip"
type="xs:decimal"/>

</xs:all>

ShEx
:street xs:string ;
:city xs:string ;
:state xs:string ;
:zip xs:decimal ;

Listing 10: All mapping

4.4. XSD Types

XSD Types can be used in ShEx as they are used on
XML Schema, e.g. whenever a string type is required
we can use xs:string. Therefore, translation is done
directly using the same types that are defined in the
XML Schema document.

4.4.1. Enumerations (using NMTokens)
Enumerations in XML Schema can be used to de-

clare the possible values that an element can have. In
ShEx, this is supported using the symbols ’[’ and ’]’.
The enclosed values are the possible values that the
RDF object can take. See Listing 11 for an example.

XML Schema
<xs:simpleType name="PublicationType">

<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Book"/>
<xs:enumeration value="Magazine"/>
<xs:enumeration value="Journal"/>

</xs:restriction>
</xs:simpleType>

<xs:element name="pubType"
ref="PublicationType"/>

<xs:attribute name="country"
type="xs:NMTOKEN"
fixed="US"/>

ShEx
:pubType ["Book" "Magazine" "Journal"] ;
:country ["US"] ;

Listing 11: Enumarations (using NMTokens) mapping

4.4.2. Pattern
Xs:pattern is used in XML Schema to define

the format and allowed contents of a string value.
Xs:pattern in ShEx uses a syntax similar to the
JavaScript language except that backslash is required
to be escaped, i.e., double backslash has to be used to
correctly escape. Therefore, the conversion is a trans-
formation between XML Schema and JavaScript Reg-
ular Expression syntaxes as shown in Listing 12.

XML Schema
<xs:simpleType name="SKU">

<xs:restriction base="xs:string">
<xs:pattern value="\d{3}-[A-Z]{2}"/>

</xs:restriction>
</xs:simpleType>
<xs:attribute name="partNum"

type="SKU"
use="required"/>

ShEx
:partNum /\\d{3}-[A-Z]{2}/ ;

Listing 12: Pattern mapping

4.5. SimpleType

Simple types in XML Schema are based on XSD
Types (see Section 4.4) and allow some enhancements
like: restrictions, lists and unions. Depending on the
content, translation is performed following different
strategies which we detail bellow. For translation of re-
strictions, see Section 4.7.

8 /

Fig. 1. Example of a RDF list construction

4.5.1. List
Lists inside simple types define a way of creating

collections of a base XSD type in XML Schema. These
lists are supported in RDF using RDF Collections2. As
previously discussed, there can be several approaches
to represent ordered lists in RDF (see Section 4.3.1). A
commonly accepted approach is the use of RDF lists:
the rdf:first edge points to the first element and the
rdf:rest edge to the rest of the list which recursively
follows the same structure until the rdf:nil element is
declared to represent the end of the list. This way, it is
possible to create the desired list and preserve the or-
der. Figure 1 shows how an RDF list is constructed for
a better understanding of this section. Hence, transla-
tion into ShEx is made by using RDF lists and the use
of recursion that defines a type with a pointer to itself
in the rdf:rest edge. See Listing 13 for an example.

XML Schema
<xs:simpleType name="IntegerList">
<xs:list itemType="xs:integer" />

</xs:simpleType>

ShEx
<IntegerList> {
rdf:first xs:integer ;
rdf:rest @<IntegerList> OR [rdf:nil];
}

Listing 13: List mapping

4.5.2. Union
Unions are the mechanism that XML Schema of-

fers to make new types that are the combination of two
simple types. With this kind of disjunction, a new type
which allows any value admitted by any of the mem-

2https://www.w3.org/TR/rdf11-mt/\#
rdf-collections

bers of the xs:union is created. For the translation into
ShEx we create a new type that is the combination of
the types involved in the xs:union as shown in Listing
14.

XML Schema
<xs:attribute name="fontsize">
<xs:simpleType>

<xs:union memberTypes="fontbynumber
fontbystringname"

/>
</xs:simpleType>

</xs:attribute>

<xs:simpleType name="fontbynumber">
<xs:restriction

base="xs:positiveInteger">
<xs:maxInclusive value="72"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="fontbystringname">
<xs:restriction base="xs:string">

<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="large"/>

</xs:restriction>
</xs:simpleType>

ShEx
:fontsize

@<Fontbynumber> OR @<Fontbystringname>

<Fontbynumber>
xs:positiveInteger MAXINCLUSIVE 72

<Fontbystringname> ["small"
"medium"
"large"
]

Listing 14: Union mapping

4.6. Complex Content and Simple Content

Complex contents and simple contents are a way
to define a new type from a base type using restric-
tions or extensions. The base type is the one that is
used as a base for the restriction (or extension) clause
and the new type is the one that is been restricted (or
extended). Complex content allows to extend or re-
strict a base xs:complexType with mixed content or
elements only. Simple content allows to extend or re-
strict a xs:complexType with character data or with a
xs:simpleType. For the translation into ShEx, the re-

/ 9

spective xs:restriction or xs:extension have to be
taken into account to define the new type.

4.6.1. Restriction
Restrictions are used in XML Schema to restrict

possible values of a base type. A new type can be de-
fined using restrictions applied to a base type. Depend-
ing on how the type and the restrictions are defined,
the translation strategies vary.

– Simple Content: If xs:simpleContent is present
XSD Facets/Restrictions must be used (see Sec-
tion 4.7 for more information). When restrict-
ing using a xs:simpleType, the transformation is
done using the known base type (see Section 4.4)
and putting some format restrictions to it. Trans-
lation into ShEx will be performed using the base
type and translating the XSD Facets as they are
defined in every specific case (see Section 4.7).

– Complex Content: If xs:complexContent is present,
the base xs:complexType is restricted using xs:group,
xs:all, xs:choice, xs:sequence, xs:attributeGroup
or xs:attribute. Complex content restriction
will restrict allowed values and elements types.
This is a case of inheritance by restriction. For
translation into ShEx, the xs:restriction ele-
ments must be taken and transformed directly
into a new shape that defines the resulting child
shape3.

4.6.2. Extension
With extensions in XML Schema, it is possible to

define a new type as an extension of a previously de-
fined one. This is a case of classic inheritance, where
the child inherits its parent elements that are added to
its own defined elements. Depending on the content,
i.e., xs:complexContent or xs:simpleContent, differ-
ent translation strategies can be used.

– Simple content: If xs:simpleContent is present
extension of the base type is performed by adding
more attributes or attribute groups to the new
type. Therefore, the translation into ShEx is made
by the concatenation of both the type and its
xs:extension to create the new shape.

– Complex content: If xs:complexContent is present
extension of base type is performed by adding
more attributes and elements to a new base one.
Therefore, translation is done by combining the

3Future versions of ShEx are planning to include inheritance. See:
https://github.com/shexSpec/shex/issues/50

base type and its xs:extension to create a new
shape.

Restrictions and extensions in ShEx are not sup-
ported directly in the current version (i.e., ShEx has no
support for extensions, restriction or inheritance) with
the same semantics as XML Schema. Therefore, we
use the normal syntax provided by ShEx and create the
two resulting shapes—by solving the xs:restriction

or xs:extension before the translation to ShEx—from
the respective xs:restriction or xs:extension as
can be seen in Listing 15. However, this translation
suffers from a loss of semantics—which is in line with
RQ3—which makes impossible a backwards conver-
sion.

XML Schema
<xs:simpleType name="mountainBikeSize">

<xs:restriction base="xs:string">
<xs:enumeration value="small" />
<xs:enumeration value="medium" />
<xs:enumeration value="large" />

</xs:restriction>
</xs:simpleType>

<xs:complexType name="FamilyMountainBikes">
<xs:simpleContent>

<xs:extension base="mountainBikeSize">
<xs:attribute name="familyMember">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="child" />
<xs:enumeration value="male" />
<xs:enumeration value="female" />

</xs:restriction>
</xs:simpleType>
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

ShEx
<MountainBikeSize> ["small" "medium" "large"]

<FamilyMountainBikes> {
:mountainBikeSize @<MountainBikeSize> ;
:familyMember ["child" "male" "female"];
}

Listing 15: Restrictions and extensions mapping,
where extensions and restrictions are directly trans-
formed into the equivalent shape

10 /

4.7. XSD Types Restrictions/Facets

4.7.1. Enumeration
Xs:enumeration restriction uses a base type to re-

strict the possible values of a type. It is declared using a
set of possible values. In ShEx this is defined using the
’[’ and ’]’ operators. The values that are allowed are
enclosed inside the square brackets. This is the same
mechanism how the example in Section 4.5.1 works.
However, Listing 16 shows a more complex example
using extensions and restrictions.

XML Schema
<xs:simpleType name="Mountainbikesize">
<xs:restriction base="xs:string">

<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>
<xs:enumeration value="large"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType
name="FamilyMountainBikeSizes">
<xs:simpleContent>

<xs:extension base="mountainbikesize">
<xs:attribute name="familyMember"

type="xs:string" />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<xs:complexType
name="ChildMountainBikeSizes">

<xs:simpleContent>
<xs:restriction

base="FamilyMountainBikeSizes" >
<xs:enumeration value="small"/>
<xs:enumeration value="medium"/>

</xs:restriction>
</xs:simpleContent>

</xs:complexType>

ShEx
<MountainBikeSize> ["small" "medium" "large"]

<FamilyMountainBikes> {
:mountainBikeSize @<MountainBikeSize> ;
:familyMember ["child" "male" "female"];
}

<ChildMountainBikeSizes>
@<FamilyMountainBikes> AND {
:mountainBikeSize ["small" "medium"]

}

Listing 16: Enumeration mapping

4.7.2. Fraction digits
Xs:fractionDigits are used in XML Schema when

a decimal type is defined (e.g., xs:decimal) and the
number of decimal digits is desired to be restricted
in the representation. ShEx supports this feature in a
similar way as XML Schema. Hence, FRACTIONDIGITS
keyword is used followed by the integer number of
fraction digits that should be allowed. See Listing 17
for an example.

XML Schema
<xs:element name="itemValue">

<xs:simpleType>
<xs:restriction base="xs:decimal">

<xs:fractionDigits value="2"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

ShEx
:itemValue xs:decimal FRACTIONDIGITS 2 ;

Listing 17: Fraction digits mapping

4.7.3. Total digits
This feature allows to restrict the total number of

digits permitted in a numeric type. In ShEx this is pos-
sible using TOTALDIGITS keyword as shown in Listing
18.

XML Schema
<xs:element name="age">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:totalDigits value="3"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

ShEx
:age xs:integer

TOTALDIGITS 3 ;

Listing 18: Total digits mapping

4.7.4. Length
Xs:length is used to restrict the number of charac-

ters allowed in a string type. In ShEx this is supported
with the LENGTH keyword followed by the integer num-
ber that defines the desired length as shown in Listing
19.

XML Schema

/ 11

<xs:element name="group">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:length value="1"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

ShEx
:group xs:string LENGTH 1 ;

Listing 19: Length mapping

4.7.5. Max Length and Min Length
Xs:maxLength and xs:minLength are used to re-

strict the number of characters allowed in a text type.
But instead of restricting to a fixed number of charac-
ters, with these features restriction to a length interval
is possible. In ShEx the definitions of minimum and
maximum length are made by using the MINLENGTH and
MAXLENGTH keywords as shown in Listing 20.

XML Schema
<xs:element name="comments">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="1000"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

ShEx
:comment xs:string

MINLENGTH 1
MAXLENGTH 1000;

Listing 20: Max length and min length mapping

4.7.6. Max-min exclusive and max-min inclusive
These features allow restricting number types to an

interval of desired values. This is the same notion as in
open and closed intervals. In ShEx, these features are
supported directly. Therefore, transformation is done
as shown in Listing 21.

XML Schema
<xs:element name="cores">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minExclusive value="0"/>
<xs:maxExclusive value="9"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="coresOpenInterval">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
<xs:maxInclusive value="8"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

ShEx
:cores xs:integer

MINEXCLUSIVE 0
MAXEXCLUSIVE 9 ;

:coresOpenInterval xs:integer
MININCLUSIVE 1
MAXINCLUSIVE 8 ;

Listing 21: Max exclusive, min exclusive, min inclu-
sive and max inclusive mapping

4.7.7. Whitespace
Xs:whiteSpace allows to specify how white spaces

in strings are handled. In XML Schema, there are three
options:

– Preserve: This option will not remove any white
space character from the given string.

– Replace: This option will replace all white space
characters (line feeds, tabs, spaces and carriage
returns) with spaces.

– Collapse: This option will remove all white
spaces characters:

∗ Line feeds, tabs, spaces and carriage returns are
replaced with spaces.

∗ Leading and trailing spaces are removed.
∗ Multiple spaces are reduced to a single space.

In ShEx, xs:whiteSpace options are not supported.
Their behaviour could be simulated using semantic ac-
tions (see Listing 22).

XML Schema
<xs:complexType name="whiteSpaces">
<xs:all>
<xs:element name="preserve">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:whiteSpace

value="preserve"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="replace">

<xs:simpleType>

12 /

<xs:restriction base="xs:string">
<xs:whiteSpace

value="replace"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name="collapse">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:whiteSpace

value="collapse"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
</xs:all>
</xs:complexType>

ShEx
<whiteSpaces> {
:preserve xs:string ;
:replace xs:string
%js{

_.o.lex = _.o.lex
.replace("/\r|\n|\r\n|\s/g", " ");

return true;
}
% ;
:collapse xs:string
%js{

var replacedText = _.o.lex
.replace("/\r|\n|\r\n|\s/g", " ");

_.o.lex = replacedText.trim();
return true;

}
%

}

Listing 22: WhiteSpace mapping

4.7.8. Unique
Xs:unique is used in XML Schema to define that an

element of some type is unique, i.e., there cannot be
the same values among elements defined in the rule.
This is useful for cases like IDs, where a unique ID is
the way to identify an element. Currently, ShEx does
not support Unique function but it is expected to be
supported in future versions4. As a temporal solution,
semantic actions could be used to implement this kind
of constraint (see Listing 23).

XML Schema
<xs:element name="Person"

maxOccurs="unbounded">

4https://www.w3.org/2001/sw/wiki/ShEx/
Unique_UNIQUE

<xs:complexType>
<xs:all>

<xs:element name="name"
type="xs:string" />

<xs:element name="surname"
type="xs:string" />

<xs:element name="id"
type="xs:integer" />

</xs:all>
</xs:complexType>
<xs:unique name="onePersonPerID">

<xs:selector xpath="."/>
<xs:field xpath="id"/>

</xs:unique>
</xs:element>

ShEx
%js{

var ids = [];
return true;

}
%
<Person> {

:name xs:string ;
:surname xs:string ;
:id xs:integer
%js{ if(ids.indexOf(_.o.lex) >= 0)

return false;
ids.push(_.o.lex);
return true;

}%
}

Listing 23: Unique mapping

5. XMLSchema2ShEx prototype

In addition to the proposed mappings from XML
Schema to Shape Expressions and in order to answer
RQ2 a prototype has been developed. This prototype
uses a subset of the presented mappings and converts a
given XML Schema input to a ShEx output.

The prototype has been developed in Scala and is
available online5. It is a work-in-progress implemen-
tation, so not all the mappings are supported yet (see
Table 1 for a list of supported features).

The tool is built on top of Scala parser combina-
tors [28]. Once the XML Schema input is analysed
and verified, it is converted to ShEx based on different
elements and types declared on it. These conversions

5https://github.com/herminiogg/
XMLSchema2ShEx

/ 13

Table 1
Supported and pending of implementation features in
XMLSchema2ShEx prototype. * Not natively supported in ShEx
2.0.

Supported features

Complex type, Simple type,
All, Attributes, Restriction,

Element, Max exclusive,
Min exclusive, Max inclusive,
Min inclusive, Enumeration,

Pattern, Cardinality

Pending implementation

Choice, List,
Union, Extension,

Fraction Digits, Length,
Max Length, Min Length,

Total digits, Whitespace*, Unique*

are made recursively and printed to the ouput in ShEx
Compact Format (ShExC).

The input XML Schema document example pre-
sented in Listing 24 is used to ensure that the proto-
type can work and do the transformation as expected.
This example includes complex types, attributes, ele-
ments, simple types and patterns among others. Com-
plex types are converted to shapes, elements and at-
tributes to triple predicates and objects, restrictions
(max/minExclusive and max/minInclusive) to numeric
intervals, cardinality attributes to ShEx cardinality and
so on. Although it is a small example, it has the struc-
ture of typical XML Schemas used nowadays and the
prototype can convert it properly as it is stated in List-
ing 24.

XML Schema
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://tempuri.org/po.xsd"
xmlns="http://tempuri.org/po.xsd"
elementFormDefault="qualified">

<xs:element name="purchaseOrder"
type="PurchaseOrderType"/>

<xs:element name="comment"
type="xs:string"/>

<xs:complexType name="PurchaseOrderType">
<xs:all>

<xs:element name="shipTo"
type="USAddress"/>

<xs:element name="billTo"
type="USAddress"/>

<xs:element ref="comment"
minOccurs="0"/>

<xs:element name="items"
type="Items"/>

</xs:all>
<xs:attribute name="orderDate"

type="xs:date"/>
</xs:complexType>

<xs:complexType name="USAddress">
<xs:all>

<xs:element name="name"
type="xs:string"/>

<xs:element name="street"
type="xs:string"/>

<xs:element name="city"
type="xs:string"/>

<xs:element name="state"
type="xs:string"/>

<xs:element name="zip"
type="xs:integer"/>

</xs:all>
<xs:attribute name="country"

type="xs:NMTOKEN"
fixed="US"/>

</xs:complexType>

<xs:complexType name="Items">
<xs:all>
<xs:element name="item"

minOccurs="0"
maxOccurs="unbounded">

<xs:complexType>
<xs:all>
<xs:element

name="productName"
type="xs:string"/>

<xs:element
name="quantity">

<xs:simpleType>
<xs:restriction

base="xs:positiveInteger">
<xs:maxExclusive

value="100"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="USPrice"
type="xs:decimal"/>

<xs:element ref="comment"
minOccurs="0"/>

<xs:element name="shipDate"
type="xs:date" minOccurs="0"/>

</xs:all>
<xs:attribute name="partNum" type="SKU"

use="required"/>
</xs:complexType>
</xs:element>
</xs:all>

</xs:complexType>

<xs:simpleType name="SKU">
<xs:restriction base="xs:string">
<xs:pattern value="\d{3}-[A-Z]{2}"/>

</xs:restriction>
</xs:simpleType>
</xs:schema>

14 /

ShEx
PREFIX : <http://www.example.com/>
PREFIX

xs: <http://www.w3.org/2001/XMLSchema#>

<Items> {
:item @<item> * ;

}
<item> {
:productName xs:string ;
:quantity xs:positiveInteger

MAXEXCLUSIVE 100 ;
:USPrice xs:decimal ;
:comment xs:string ? ;
:shipDate xs:date ? ;
:partNum /\\d{3}-[A-Z]{2}/ ;

}
<PurchaseOrderType> {
:shipTo @<USAddress> ;
:billTo @<USAddress> ;
:comment xs:string ? ;
:items @<Items> ;
:orderDate xs:date ;

}
<USAddress> {
:name xs:string ;
:street xs:string ;
:city xs:string ;
:state xs:string ;
:zip xs:integer ;
:country ["US"] ;

}

Listing 24: XML Schema to ShEx example

5.1. Validation example

XML
<?xml version="1.0"?>
<purchaseOrder
xmlns="http://tempuri.org/po.xsd"
orderDate="1999-10-20">
<shipTo country="US">

<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>

<comment>
Hurry, my lawn is going wild!

</comment>
<items>
<item partNum="872-AA">

<productName>
Lawnmower

</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>

Confirm this is electric
</comment>
</item>

<item partNum="926-AA">
<productName>

Baby Monitor
</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>
</purchaseOrder>

RDF
:order1

:shipTo [
:name "Alice Smith" ;
:street "123 Maple Street" ;
:city "Mall Valley" ;
:state "CA" ;
:zip 90952 ;
:country "US"

] ;
:billTo [

:name "Robert Smith" ;
:street "8 Oak Avenue" ;
:city "Old Town" ;
:state "PA" ;
:zip 95819 ;
:country "US"

] ;
:comment "Hurry, my lawn is going wild!";
:items [

:item [
:productName "Lawnmower" ;
:quantity "1"^^xs:positiveInteger ;
:USPrice 148.95 ;
:comment "Confirm this is electric";
:partNum "872-AA"

] ;
:item [

:productName "Baby Monitor" ;
:quantity "1"^^xs:positiveInteger ;
:USPrice 39.98 ;
:shipDate "1999-05-21"^^xs:date ;
:partNum "926-AA"

] ;
];
:orderDate "1999-10-20"^^xs:date .

/ 15

Listing 25: XML to RDF example

Once conversion from XML Schema to ShEx is
done, it must be verified that the same validation that
was performed on XML data using XML Schema, but
now on RDF data using ShEx, is working equivalently.
The translation of a valid XML to RDF is executed
which is presented in Listing 25. The conversion pre-
sented in the snippet uses blank nodes to represent the
nested types. This is done to avoid creating a fictitious
node every time a triple is pointing to another triple (in
other words, every time it has a nested type). The con-
version was performed following similar equivalences
to those proposed in the mappings. That is, complex
types to triple subjects or predicates, simple types to
triple objects, cardinality translated directly and so on.

For RDF validation using ShEx there are various im-
plementations in different programming languages that
are being developed6. One of these implementations is
made in Scala by one of the authors of this paper and
it is available online7.

Using the examples given above the validation can
be performed with the mentioned tool which allows
the RDF and the ShEx inputs in various formats and
then the option to validate the RDF against ShEx or
SHACL schema. As seen in Figure 2, validation is per-
formed trying to match the shapes with the existing
graphs, whenever the tool matches a pattern it shows
the evidence in green and a short explanation of why
this graph has matched.

6. Non-Deterministic schemata

There is an issue that arises in XML Schema docu-
ments that should be solved when proposing a transfor-
mation from XML Schema. This is the topic of Non-
Deterministic schemata where the parser is unable to
determine the sequence to validate due to the Unique
Particle Attribution. This issue appears, for example,
in a choice between two sequences that begin with the
same element. This event can be formulated with the
regular expression: (ab | ac) and in XML Schema
as shown in Listing 26.

6A list of ShEx implementations is available at: https://
shex.io

7http://shaclex.herokuapp.com

XML Schema
<xs:complexType name="nondeterministic">

<xs:choice>
<xs:sequence>

<xs:element name="a"/>
<xs:element name="b"/>

</xs:sequence>
<xs:sequence>

<xs:element name="a"/>
<xs:element name="c"/>

</xs:sequence>
</xs:choice>

</xs:complexType>

ShEx
<nondeterministic> {

a @<ab> OR @<ac> ;
}

<ab> {
rdf:first @<a> ;
rdf:rest @<ab1> ;

}

<ac> {
rdf:first @<a> ;
rdf:rest @<ac1> ;

}

<ab1> {
rdf:first @ ;
rdf:rest [rdf:nil] ;

}

<ac1> {
rdf:first @<c> ;
rdf:rest [rdf:nil] ;

}

<a> {
:namea xs:string ;

}

 {
:nameb xs:string ;

}

<c> {
:namec xs:string ;

}

Listing 26: Non-Deterministic schema and its ShEx
counterpart

These sequences are translated as shown in Section
4.3.1 and the final result can be seen in Listing 26. The
question is that if this non-determinism is also trans-
ferred to the converted schemata. In order to check the

16 /

Fig. 2. Validation result using Shaclex validator. The RDF data is entered in the left text area whereas the ShEx schema is entered on the right
text area. In the bottom, a ShapeMap is declared to make the validator know where and how to begin the validation, in this case we commanded
to validate :order1 node with <PurchaseOrderType> shape. In the top of the page, the result is shown detailing how each node was validated and
what are the evidences or failures for the validation. A link to the validation example can be found in Supplementary Material.

/ 17

actual behaviour we have run this example on Shaclex
validator which shows that the validation is performed
correctly (see Figure 3).

This behaviour is motivated by two things: firstly,
the structure of RDF lists is different from XML
Schema sequences which makes the validation to be
performed in a different form; consequently, the val-
idation in ShEx is performed recursively trying to
match shape by shape. Therefore, if an element match
with a shape this will scale up into the recursion tree
without creating ambiguity problems.

7. Conclusions and Future work

In this work, a possible set of mappings between
XML Schema and ShEx has been presented. With this
set of mappings, automation of XML Schema conver-
sions to ShEx is a new possibility for schema trans-
lation which is demonstrated by the prototype that
has been developed and presented in this paper. Us-
ing an existing validator helped to demonstrate that
an XML and its corresponding XML Schema are still
valid when they are converted to RDF and ShEx.

One future line of work that should be tackled is
the loss of semantics: with this kind of transformations
some of the elements could not be converted back to
their XML Schema origin. Nevertheless, it is a difficult
problem due to the difference between ShEx and XML
data models and it would involve some sort of modifi-
cations and additions to the ShEx semantics (like pre-
viously mentioned inheritance).

To cover more business cases and make this solu-
tion more compatible with existing systems, there is
the need to create mappings for Schematron and Relax
NG as a future work. Relax NG is grammar-based but
Schematron is rule based, which will make conversion
from Relax NG to ShEx more straightforward than
from Schematron to ShEx, as ShEx is also grammar-
based. Another line of future work is to adapt the pre-
sented mappings to SHACL: most of the mappings
follow a similar structure. Moreover, the rule-based
Schematron conversion seems more feasible using the
advanced SHACL-SPARQL features which allow to
expand the core SHACL language by using SPARQL
queries to validate complex constraints.

With the present work, validation of existing trans-
formations between XML and RDF is now possible
and convenient. This kind of validations makes the
transformed data more reliable and trustworthy and it

also facilitates migrations from non-semantic data for-
mats to semantic data formats.

Conversions from other formats (such as JSON
Schema, DDL, CSV Schema, etc.) will also be investi-
gated to permit an improvement of data interoperabil-
ity by reducing the technological gap.

Acknowledgments

This work has been partially funded by the Vice-
rectorate for Research of the University of Oviedo un-
der the call of "Plan de Apoyo y Promoción de la In-
vestigación".

References

[1] Steve Battle. Round-tripping between XML and RDF. In Inter-
national Semantic Web Conference (ISWC), Hiroshima, Japan,
2004.

[2] Steve Battle. Gloze: XML to RDF and back again. In Proceed-
ings of the First Jena User Conference, 2006.

[3] Diego Berrueta, Jose Emilio Labra Gayo, and Ivan Herman.
XSLT + SPARQL: Scripting the semantic web with SPARQL
embedded into XSLT stylesheets. In 4th Workshop on Scripting
for the Semantic Web, Tenerife, 2008.

[4] Geert Jan Bex, Frank Neven, and Jan den Bussche. DTDs ver-
sus XML schema: a practical study. In Proceedings of the 7th
international workshop on the web and databases: colocated
with ACM SIGMOD/PODS 2004, pages 79–84. ACM, 2004.

[5] Paul V Biron, Ashok Malhotra, World Wide Web Consortium,
et al. XML Schema part 2: Datatypes. https://www.w3.
org/TR/xmlschema-2/, 2004.

[6] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno
Lopes, and Axel Polleres. Mapping between RDF and XML
with XSPARQL. Journal on Data Semantics, 1(3):147–185,
2012.

[7] Hannes Bohring, Sören Auer, et al. Mapping XML to OWL
Ontologies. Leipziger Informatik-Tage, 72:147–156, 2005.

[8] Iovka Boneva, Jose Emilio Labra Gayo, and Eric
Prud’hommeaux. Semantics and Validation of Shapes
Schemas for RDF. In International Semantic Web Conference,
volume 10587 of Lecture Notes in Computer Science, pages
104–120. Springer Verlag, October 2017.

[9] Frank Breitling. A standard transformation from XML to RDF
via XSLT. Astronomische Nachrichten, 330(7):755–760, 2009.

[10] Dan Brickley and R.V. Guha. RDF Schema 1.1. https:
//www.w3.org/TR/rdf-schema/, 2014.

[11] James Clark and Makoto Murata. Relax NG specification.
http://relaxng.org/spec-20011203.html, 2001.

[12] Davy Van Deursen, Chris Poppe, Gäetan Martens, Erik Man-
nens, and Rik Van de Walle. XML to RDF Conversion: A
Generic Approach. In Automated solutions for Cross Media
Content and Multi-channel Distribution, 2008. AXMEDIS ’08.
International Conference on, pages 138–144, Washington, nov
2008.

18 /

Fig. 3. Validation result using Shaclex validator of a ShEx schema converted from a non-deterministic XML Schema document. In the Shape
map input area text we have indicated to Shaclex validator to check if :nondeterministic1 and :nondeterministic2 hold the form of shape <non-
deterministic>. In the top of the page the satisfactory result is shown in green.

/ 19

[13] Nick Drummond, Alan L Rector, Robert Stevens, Georgina
Moulton, Matthew Horridge, Hai Wang, and Julian Seiden-
berg. Putting OWL in order: Patterns for sequences in OWL.
In OWLED, 2006.

[14] TEI Consortium, eds. TEI P5: Guidelines for Electronic Text
Encoding and Interchange. http://www.tei-c.org/
Guidelines/P5/, 2017.

[15] Matthias Ferdinand, Christian Zirpins, and David Trastour.
Lifting XML Schema to OWL, pages 354–358. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[16] P. N. Fox, R. Mead, M. Talbot, and J. D. Corbett. Data manage-
ment and validation. In Statistical Methods for Plant Variety
Evaluation, pages 19–39, Dordrecht, 1997. Springer Nether-
lands.

[17] W3C OWL Working Group. OWL 2 Web Ontology Language
Document Overview (Second Edition). https://www.w3.
org/TR/owl2-overview/, 2012.

[18] Rick Jelliffe. The Schematron: An XML structure validation
language using patterns in trees. http://xml.ascc.net/
resource/schematron/schematron.html, 2001.

[19] Holger Knublauch. SPIN - Modeling Vocabulary. http://
www.w3.org/Submission/spin-modeling/, 2011.

[20] Holger Knublauch and Dimitris Kontokostas. Shapes con-
straint language (SHACL). https://www.w3.org/TR/
shacl/, June 2017.

[21] Nassim Kobeissy, Marc GIROD Genet, and Djamal Zeghlache.
Mapping XML to OWL for seamless information retrieval in
context-aware environments. In Pervasive Services, IEEE In-
ternational Conference on, pages 349–354. IEEE, 2007.

[22] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva,
and Dimitri Kontokostas. Validating RDF Data. Morgan and
Claypool Publishers, 2017.

[23] Damien Lacoste, Kiran Prakash Sawant, and Suman Roy. An
efficient XML to OWL converter. In Proceedings of the 4th
India software engineering conference, pages 145–154. ACM,
2011.

[24] Dongwon Lee, Murali Mani, and Wesley W Chu. Schema
Conversion Methods between XML and Relational Models.
Knowledge Transformation for the Semantic Web, 95:1–17,
2003.

[25] Sergei Melnik and Stefan Decker. Representing Order in
RDF. http://infolab.stanford.edu/~stefan/
daml/order.html, January 2001.

[26] Albert Meroño-Peñuela. Semantic web for the humanities.
In The Semantic Web: Semantics and Big Data: 10th Interna-
tional Conference, ESWC 2013, Montpellier, France, May 26-
30, 2013. Proceedings, pages 645–649. Springer Berlin Hei-
delberg, 2013.

[27] Igor Miletic, Marko Vujasinovic, Nenad Ivezic, and Zoran
Marjanovic. Enabling Semantic Mediation for Business Appli-
cations: XML-RDF, RDF-XML and XSD-RDFS transforma-
tions. In Ricardo J Goncalves, Jörg P Müller, Kai Mertins,

and Martin Zelm, editors, Enterprise Interoperability II: New
Challenges and Approaches, pages 483–494. Springer London,
London, 2007.

[28] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser
combinators in Scala. Department of Computer Science, KU
Leuven, 2008.

[29] Falco Nogatz and Thom Frühwirth. From XML Schema to
JSON Schema-Comparison and Translation with Constraint
Handling Rules. Ulm, Germany, 2013.

[30] Martin J O’Connor and Amar Das. Acquiring OWL ontologies
from XML documents. In Proceedings of the sixth interna-
tional conference on Knowledge capture, pages 17–24. ACM,
2011.

[31] Giuseppe Della Penna, Antinisca Di Marco, Benedetto Intrig-
ila, Igor Melatti, and Alfonso Pierantonio. Interoperability
mapping from XML Schemas to ER diagrams. Data Knowl.
Eng., 59:166–188, 2006.

[32] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo,
and Gregg Kellogg. Shape expressions language 2.0. http:
//shex.io/shex-semantics/index.html, 2017.

[33] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold
Solbrig. Shape expressions: an RDF validation and transforma-
tion language. In Proceedings of the 10th International Con-
ference on Semantic Systems, pages 32–40. ACM, 2014.

[34] Toni Rodrigues, Pedro Rosa, and Jorge Cardoso. Mapping
XML to Existing OWL ontologies. In International Confer-
ence WWW/Internet, pages 72–77, 2006.

[35] John Simpson and Susan Brown. From XML to RDF in the
Orlando Project. In 2013 International Conference on Culture
and Computing, Kyoto, Japan, pages 194–195, Sept 2013.

[36] C Michael Sperberg-McQueen and Eric Miller. On mapping
from colloquial XML to RDF using XSLT. In Extreme Markup
Languages R©, 2004.

[37] Timo Sztyler, Jakob Huber, Jan Noessner, Jaimie Murdock,
Colin Allen, and Mathias Niepert. LODE: Linking digital
humanities content to the web of data. In IEEE/ACM Joint
Conference on Digital Libraries, London, UK, pages 423–424,
Sept 2014.

[38] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L McGuinness.
Integrity constraints in OWL. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence (AAAI-10),
Atlanta, 2010.

[39] Pham Thi Thu Thuy, Young-Koo Lee, Sungyoung Lee, and
Byeong-Soo Jeong. Transforming valid XML documents into
RDF via RDF schema. In Next Generation Web Services Prac-
tices, 2007. NWeSP 2007. Third International Conference on,
pages 35–40. IEEE, 2007.

[40] Pham Thi Thu Thuy, Young-Koo Lee, Sungyoung Lee, and
Byeong-Soo Jeong. Exploiting XML schema for interpret-
ing XML documents as RDF. In Services Computing, 2008.
SCC’08. IEEE International Conference on, volume 2, pages
555–558. IEEE, 2008.

Answers	to	Emir	Muñoz	
First	of	all,	we	would	like	to	thank	the	reviewer	for	this	second	review.	We	think	that	
this	review	has	contributed	to	polish	some	of	the	paper	open	issues	and	to	make	a	
better	version	of	it.	
	
We	have	rewritten	and	reorganised	the	related	work	section.	We	opted	to	categorise	
the	related	work	to	discuss	category	by	category	which	are	the	advances	and	
limitations	of	them	in	comparison	with	our	goal.		
	
We	have	also	added	references	to	research	questions	along	the	sections	to	discuss	the	
reached	conclusions.	Section	6	is	a	new	one	that	tackles	directly	with	the	RQ4.	We	
have	also	changed	the	research	questions	to	be	more	specific	with	the	goals	of	this	
present	work.		
	
In	the	next	points,	we	answer	the	reviewer’s	comments:	
	
###	Abstract	

1. We	changed	the	sentence	to	“These	transformations	and	mappings	between	
different	technologies	have	an	economical	and	technological	impact	on	
society”.	This	is	more	accurate	because	the	change	to	new	platforms	drives	to	a	
cost	in	technology	adoption	and	migration	and	therefore	in	an	economical	cost	
(human	and	time	cost	which	is,	most	of	the	time,	translated	to	economical	
cost).	

2. Corrected	
	
###	Section	1	

1. Changed	
2. We	meant	confidence.	We	changed	reliance	for	confidence.	
3. For	this	context,	we	have	defined	normalisation	as	using	a	homogeneous	

schema	or	structure	across	different	sources	of	similar	information.	This	
definition	was	included	at	the	very	beginning	of	the	introduction	but	without	
interfering	with	the	already	present	writing.		

4. Changed	
5. There	was	no	comma	after	“than	DTDs”.	
6. Changed	
7. Changed	
8. Added	
9. We	changed	the	sentence	and	added	some	context.	Result:	“In	the	Semantic	

Web,	RDF	lacked	a	standard	schema	language	which	cover	the	same	features	
that	XML	Schema	does	for	XML.”	

10. It	stands	for	OWL	2.0,	the	reference	to	OWL	[17]	was	included.	
11. Added	a	reference	to	RDF	Schema.	
12. Changed	
13. Changed	
14. We	moved	the	reference	to	SHACL	specification	next	to	SHACL	mention,	

moreover	we	added	a	clarification	of	what	SHACL	is.	

15. Changed	
16. Changed	
17. Changed	
18. Changed	
19. We	simplified	the	sentence	and	removed	the	how-to	questions.	
20. Added	
21. We	changed	the	sentence	for	this	one:	“With	that	in	mind,	providing	generic	

transformation	tools	from	in-use	technologies	to	semantic	technologies	can	
enhance	the	migration	possibilities;	in	other	words,	if	we	can	create	tools	that	
ease	the	transformation	and	adaptation	among	technologies	we	will	encourage	
future	migrations.”	which	is	more	accurate	and	explanatory.		

22. Changed	
23. Changed	
24. TEI	(Text	Encoding	Initiative)	is	a	standard	for	the	representation	of	texts	in	

XML	and	it	is	used	in	digital	humanities	to	represent	manuscripts	(among	other	
kind	of	texts).	In	this	case,	we	are	referring	to	TEI	as	a	case	study	where	if	this	
tool	can	convert	the	XML	Schema	to	ShEx	and	then	XML	is	converted	to	RDF	
(with	other	existing	tools)	we	will	be	contributing	to	the	migration	of	this	
knowledge	to	semantic	technologies	and	all	will	be	validated	like	it	was	before.		

25. Changed	
26. Changed	
27. Changed	
28. We	removed	the	therefore	as	it	is	not	a	conclusion.	
29. We	were	referring	to	the	exposition	made	in	the	introduction.	Therefore,	we	

changed	“With	that	problem	in	mind”	for	“Taking	into	account	what	we	
previously	exposed”.	

30. We	changed	the	RQ1	for	the	one	you	proposed.		
31. We	stated	our	research	questions	more	clearly	and	we	mention	our	

conclusions	in	the	sections	5,	6	and	7.	
32. We	changed	RQ2	and	RQ3	because	a	part	of	RQ3	was	indeed	saying	the	same	

as	RQ2.	Now	RQ3	is	different	from	RQ2.		
33. Changed	
34. Changed	
35. Changed	
36. We	refer	to	a	possible	set	of	mappings	because	this	is	our	solution	but	other	

authors	can	propose	other	sets	of	mappings	that	are	valid	and	different	from	
our	ones.		

	
###	Section	2	

1. Changed	‘field’	for	‘task’	and	rephrased.	
2. We	categorised	the	related	work	in	different	approaches	and	we	pointed	out	

what	things	they	lack	from	our	work	objective.		
3. Changed	
4. Changed	
5. In	our	opinion,	retrieve	is	very	general	for	getting	data	and	query	suppose	

filtering	data	and	more	complex	transformations.	However,	retrieve	is	a	
subpart	of	query	so	we	omitted	retrieve	from	the	sentence.		

6. Removed	because	of	reorganisation	in	this	section.	
7. Changed	

	
###	Section	3	

1. Changed	
2. Changed	
3. Changed	

	
###	Section	4	

1. Changed	
2. Referenced	5,	also	3	and	4.	
3. Changed	
4. Changed	
5. Changed	for	“in	the	following	sections”.	
6. Reference	included.	
7. Changed	
8. Solved	by	the	previous	one.	
9. Changed	
10. Reference	included	
11. Reference	included	
12. Reference	included	
13. Reference	included	
14. Changed	
15. Reference	included	
16. Solved.	However,	it	can	change	(without	much	control)	because	of	Latex	

content	distribution.	
17. Changed	
18. Reference	included	
19. Reference	included	
20. Reference	included	
21. Reference	included	
22. Reference	included	
23. Reference	included	
24. It	is	implemented	using	the	XPath	query	“.”.	However,	if	another	XPath	query	is	

used	it	can	be	translated	using	the	same	strategy	shown	in	the	example.	The	
only	thing	to	consider	is	where	to	put	the	semantic	action	that	is	indicated	by	
the	XPath	query.	So,	it	is	not	a	local	assumption	it	is	just	a	local	example.		

25. Changed	and	footnote	with	link	to	the	Wiki	issue	of	UNIQUE	included.	
26. Reference	included	

	
###	Section	5	

1. Changed	
2. Changed	
3. Changed	
4. Removed	
5. Changed	
6. Changed	

7. Changed	
	
###	Section	6	

1. We	made	some	more	research	of	ambiguity	problems	in	XML	Schema	and	what	
are	the	implications	in	our	proposed	transformation.	This	topic	is	now	
described	in	the	new	Section	6.	

2. We	added	a	little	explanation	on	the	same	sentence.	SHACL-SPARQL	features	
allow	to	expand	the	core	language	by	using	SPARQL	queries	to	make	complex	
constraints.	

	
###	References	

1. Added	
2. We	added	an	URL	for	18,	a	source	for	21	and	the	venue	for	29.	
3. Changed	

	
	
We	hope	that	this	review	could	reach	and	solve	reviewer’s	concerns.	We	are	looking	
forward	to	hearing	from	him.		
	

Best	Regards,	
Herminio	García-González	

José	Emilio	Labra-Gayo		

Answers	to	Simon	Steyskal	
First	of	all,	we	would	like	to	thank	the	reviewer	for	this	second	review.	We	think	that	
this	review	has	contributed	to	polish	some	of	the	paper	open	issues	and	to	make	a	
better	version	of	it.	
	
We	have	changed	pompous	statements	and	made	them	more	relaxed	or	directly	
removed	them.	We	have	linked	all	Listings	with	the	text.	About	the	xs	or	xsd	prefix,	we	
have	opted	to	use	xs	along	the	whole	paper	and	now	the	consistency	has	improved.		
	
We	have	also	added	references	to	research	questions	along	the	sections	to	discuss	the	
reached	conclusions.	Section	6	is	a	new	one	that	tackles	directly	with	the	RQ4.	We	
rewrote	RQ4	to	deal	with	the	non-deterministic	schemata	which	was	the	reason	for	
that	research	question.	We	have	also	changed	the	research	questions	to	be	more	
specific	with	the	goals	of	this	present	work.		
	
We	have	thought	about	the	recap	of	the	RQs.	However,	we	opted	to	make	a	mention	
about	the	RQ	in	discussion	when	it	is	not	clear.	In	addition,	the	RQs	are	now	clearer	
and,	in	the	conclusions,	they	can	be	followed	up	clearly.	With	that	in	mind	RQ1	is	
approached	in	Section	4,	RQ2	in	Section	5,	RQ3	is	discussed	in	Section	4	and	Section	7	
and	RQ4	in	Section	6.	However,	if	the	reviewer	see	that	this	recap	is	going	to	improve	
the	manuscript	we	can	add	it.	
	
In	the	next	points,	we	answer	the	reviewer’s	comments	in	the	handwritten	scan	of	the	
manuscript:		
	
###	Abstract	

• We	removed	new	from	the	first	sentence	of	the	abstract.	Indeed,	it	is	not	a	
new	topic.		

• We	also	rephrased	the	first	sentence.	
• On	the	other	hand	->	Besides	
• Come	at	a	price	->	have	an	economical	and	technological	impact	on	society.	
• One	of	the	recent	RDF	validation	languages	->	a	validation	language	for	RDF	
• To	a	new	era	of	semantic-aware	and	interoperable	data	->	to	an	improvement	

of	data	interoperability	due	to	the	reduction	of	the	technological	gap.	
	
###	Section	1	

• Trustworthy	->	reliable	(It	is	more	reliable	because	patterns	are	normalized	and	
therefore	data	consuming	is	easier.)	

• Predictable	->	standardised	
• Querying	and	standardisation	->	querying	and	standardization	of	datasets	
• Reference	moved	up	
• And	with	more	features	->	with	more	expressiveness	
• Documentation	->	We	are	referring	to	documentation	because	many	tools	can	

generate	documentation	from	an	XML	Schema.		

• Alongside	the	appearance	of	DTDs	and	XML	Schema	->	Besides	DTD	and	XML	
Schema.	

• Other	alternatives	for	XML	validation	(whole	sentence	rephrased).	
• Lacked	->	was	missing	
• A	standard	schema	->	a	standard	constraints	validation.	
• Does	with	->	does	for	
• Validation	language	->	standard	constraints	validation	language	
• Before	->	ever	
• Semantic	Web	technologies	->	Semantic	Web	
• A	lacking	process	when	converting	XML	to	RDF	is	validation	->	means	for	

validating	the	output	data	after	converting	XML	to	RDF	are	missing	
• We	say	in	Section	2	that	to	the	far	of	our	knowledge	no	other	similar	

conversion	was	proposed.		
• Are	defining	the	same	type	->	are	defining	the	same	meaning.	
• And	more	traditional	ones	->	and	more	traditional	ones	(e.g.,	XML,	JSON,	CSV,	

relational	databases,	etc.).	
• Can	take	the	benefit	of	->	can	take	benefit	from	
• Are	not	going	to	deal	->	are	hesitant	to	deal	
• Can	offer	a	solution	and,	therefore,	automatic	conversion	->	can	offer	a	

solution	and	automatic	conversion	
• Space	->	place	
• The	four	Research	Questions	have	been	rephrased	to	be	more	concise	and	

different	from	the	other	ones.	
	
###	Section	2	

• Conversion	to	Semantic	Web	technologies	is	a	field	that	presents	several	
previous	works.	->	Migration	to	Semantic	Web	technologies	is	a	task	that	has	
several	previous	works.			

• Many	conversions	to	RDF	—and	backwards—	->	many	conversions	from/to	
• Is	also	a	key	question	[12]	->	is	also	a	key	question	(c.f.,	[12])	
• a	domain	model	as	the	main	representation	->	a	domain	model	as	the	main	

representation	of	data	structure	and	constraints	
• In	this	paper,	a	transformation…	(Removed)	

	
###	Section	3	

• W3C	data	shapes	working	group	->	W3C	Data	Shapes	Working	Group	
• Vs	->	versus	
• It	is	not	an	attribute	that	is	desirable	by	itself.	But,	for	demonstration	purposes,	

it	has	a	more	concise	syntax	which	make	examples	shorter	and	more	
understandable.		

• RelaxNG	->	Relax	NG	
• Working	group	->	community	group	
• In	Listing	1	there	is	an	example	->	Listing	1	illustrates	an	example	
• orderId	(formatted)	
• xsd:date	->	xs:date	
• Added	a	reference	to	ShEx	specification	

• Indeed,	ShExR	is	the	JSON-LD	interpretation	of	ShExJ	in	RDF	representation.	
• Was	selected	->	was	used	
• Because	it	is	intended	for	humans	and	it	is	more	easy	to	read	->	because	it	is	

easy	to	read	
• Technologies	(removed)	

	
###	Section	4	

• Doing	the	(removed)	
• And	what	a	possible	conversion	to	ShEx	can	be	->	and	a	possible	conversion	to	

ShEx.	
• Reference	included	for	Listing	3	
• There	is	a	direct	match	between	them	(removed)	
• With	ref	no	further	restrictions	are	needed.	The	referenced	element	should	

appear	somewhere	in	the	paper	but	there	are	no	other	restrictions	for	ref	
attribute.		

• Reference	included	for	Listing	4.	
• Reference	included	for	Listing	5.	
• Whole	first	paragraph	of	attribute	section	rephrased.		
• Complex	types	can	be	compound	of	different	statements	->	Complex	types	

consist	of	various	statements	
• Reference	included	for	Listing	7.	
• In	ShEx	this	is	more	complex	due	to	the	RDF	graph	structure	->	representing	the	

same	modeling	in	ShEx	is	complex	due	to	RDF	graph	structure	
• The	most	obvious	is	using	->	the	most	obvious	one	is	using	
• However,	this	is	one	of	the	possible	ways	of	doing	that	and	there	can	be	other	

ways	to	represent	it	[9,18]	->	(c.f.,	other	ways	to	represent	it	[9,	18])	
• Sequence	->	xs:sequence	
• The	following	examples	shows	how	the	mapping	is	done	for	a	->	The	example	in	

Listing	8	shows	how	the	mapping	is	done	for	a	
• [rdf:nil]	In	fact	this	is	ShEx	specific	and	this	is	used	because	rdf:nil	is	not	

interpreted	like	a	datatype	like	the	case	of	xsd	datatypes.	In	this	case,	it	is	just	a	
value.	So	in	order	to	tell	to	ShEx	validator	that	one	possible	value	is	rdf:nil	we	
enclose	rdf:nil	into	‘[‘	and	‘]’	which	is	the	operator	for	a	list	of	possible	values.		

• In	RDF	the	list	can	be,	indeed,	modeled	like	a	list	of	BN.	For	example,	see	Figure	
3	in	the	new	Section	6.	

• In	Listing	9	we	changed	sequence	for	all	for	the	simplicity	of	the	example.	
• Reference	for	Listing	9	included.	
• All	->	xs:all	
• Reference	for	Listing	10	included.	
• XSDTypes	->	XSD	Types	
• Can	be	used	on	ShEx	->	can	be	used	in	ShEx	
• Is	desired	->	is	required	
• NMTokens	is	a	type	for	string	data	and	it	is	used	for	enumerations.	We	included	

in	the	Section	title	and	in	the	Listing	caption	the	clarification:	“(using	
NMTokens)”	

• Reference	for	Listing	11	included.	

• Pattern	is	used	in	XML	Schema	to	define	how	a	string	value	should	be	or	what	
type	of	format	is	allowed	->	Pattern	is	used	in	XML	Schema	to	define	the	format	
and	allowed	contents	of	a	string	value.	

• Double	backslash	has	to	be	used	to	be	correctly	escaped	->	double	backslash	
has	to	be	used	to	correctly	escape	

• Reference	for	Listing	12	included.	
• In	->	on	
• Translation	into	ShEx	(removed)	
• Following	a	different	criteria	->	following	different	strategies	
• Bellow	->	below	
• An	edge	point	to	the	first	element	and	another	to	the	rest	of	the	list	->	the	

rdf:first	edge	points	to	the	first	element	and	the	rdf:rest	to	the	rest	of	the	list	
• In	this	way	->	This	way	
• Reference	for	Listing	13	included.	
• Figure	1	font	resized	and	prefixes	included.		
• Union	->	combination	
• ComplexContent	and	SimpleContent	->	Complex	Content	and	Simple	Content	
• And	putting	some	formats	restrictions	depending	on	the	base	type	->	and	

putting	some	format	restrictions	to	it.	
• —ShEx	supports	the	built-in	XSD	Types	defined	for	XML	Schema,	therefore	

translation	is	done	directly—	(removed)	
• specific	case,	see	Section	4.7	->	specific	case	(see	Section	4.7)	
• will	restrict	allowable	values	and	element	type	restrictions	->	will	restrict	

allowed	values	and	elements	types.	
• Yes,	it	is	not	supported	by	ShEx	and	we	are	proposing	a	conversion	which	firstly	

solves	the	restriction	or	extension	and	then	translate	the	resulting	type	to	ShEx.	
It	is	a	way	to	make	the	translation	possible	but	it	leads	to	a	loss	of	information	
which	we	comment	in	the	conclusions	section.	We	have	included	a	better	
explanation	of	this	process	and	a	note	to	the	loss	of	information.	

• Shapes	with	:	shape	guards	changed.	
• 4.7.1	and	4.4.1	are	different	examples	for	the	same	thing	but	4.7.1	is	a	more	

complex	one	due	to	the	introduction	of	simpleContent	once	they	are	explained.		
We	added	a	bit	explanation	linking	to	Section	4.4.1	and	what	is	the	difference	
in	the	Listing.	

• Reference	for	Listing	17	included.	
• Reference	for	Listing	18	included.	
• xs:length	is	now	in	bold.	
• Maximum	and	minimum	length	->	MaxLength	and	minLength	
• xs:minLength	and	xs:maxLength	are	now	in	bold	
• Reference	for	Listing	19	included.	
• Allow	to	restrict	->	allow	restricting	
• Exclusive	restrict	the	use	of	the	given	value	and	inclusive	does	not	restrict	the	

use	of	given	value	(removed)	
• Reference	for	Listing	20	included.	
• Reference	for	Listing	21	included.	
• xs:totalDigits	is	now	in	bold.	

• Section	4.7.6	moved	up	to	4.7.3	
• White	spaces	on	strings	->	white	spaces	in	strings	
• We	added	a	little	explanation	about	Semantic	Actions	at	the	end	of	the	Section	

3.	
• xs:whiteSpace	and	xs:unique	are	now	in	bold	(The	bold	it	is	not	just	bold	is	

syntax	highlighting	so	we	opted	to	add	the	forgotten	one	to	the	keywords	list	
to	be	highlighted).	

• Constraint	->	rule	
• Nowadays	->	Currently	

	
###	Section	5	

• For	the	sake	of	hypothesis	demonstration	->	in	order	to	answer	RQ2	
• And	it	is	available	->	and	is	available	
• See	Table	1	->	See	Table	1	for	a	list	of	supported	features	
• Not	supported	in	ShEx	2.0	->	Not	natively	supported	in	ShEx	2.0	
• Indentation	fixed	
• In	the	snippet	is	a	possible	one	that	uses	->	in	the	snippet	uses	
• This	is	done	for	avoiding	to	creating	a	fictional	node	every	time	->	This	is	done	

to	avoid	creating	a	fictitious	node	
	
###	Section	6	

• Is	a	new	possibility	->	is	a	new	possibility	for	schema	translation	
• Like	the	inheritance	case	->	like	previously	mentioned	inheritance	
• To	cover	all	the	business	cases	->	to	cover	more	business	cases	
• Make	this	solution	more	compatible	->	make	this	solution	more	compatible	

with	existing	systems	
• This	future	line	should	be	tackled…	(Removed	sentence)	
• Grammar	based	->	grammar-based	
• Is	also	based	in	grammar	->	is	also	grammar-based	
• Plausible	->	feasible	
• From	Schematron	->	from	Schematron	to	ShEx	
• SHACL-sparql	->	SHACL-SPARQL	
• Removed	redundant	paragraph	
• However,	a	big	path	should	be	travelled	(removed)	
• Should	->	will	
• Treated	->	investigated	
• Encouraged	(removed)	
• To	permit	a	migration	to	a	new	set	of	semantic-aware	and	interoperable	data.	

->	to	permit	an	improvement	of	data	interoperability	by	reducing	the	
technological	gap.	

We	hope	that	this	review	could	reach	and	solve	reviewer’s	concerns.	We	are	looking	
forward	to	hearing	from	him.		
	

Best	Regards,	
Herminio	García-González	

José	Emilio	Labra-Gayo	

