Semantic Web and Image Information Mining

Jose Emilio Labra Gayo University of Oviedo, Spain

http://www.di.uniovi.es/~labra

The current Web

Current Web = the biggest repository of information ever compiled by Humanity

Designed for direct human consumption

Lots of information available in:

Natural Language in HTML

English, Spanish, Chinese, Italian, etc.

More and More multimedia

Images, audio, video, etc.

Too much data, not enough knowledge

Multimedia on the Web

Large collections of multimedia assets

Data integration problem

Most of them driven by stand-alone databases

Data isolated syntactically and semantically

Need for Interoperability

Syntactic level

Semantic level

Syntactic Interoperability

Data formats that we can share

XML technologies

Web Services and mashups

Levels of Interoperability Semantic interoperability Share meaning / Concepts Finding and representing semantic links Standard ways to provide meta-data Automatically process the content

RDF

Resource Description Framework (1998)

Description of resources

Resources = entities identified by URI

Binary Relationships between resources

Property = global name of the relationship (URI)

Subject → Predicate → Object

RDF Triples

Subject

A resource identified by URI

Can also be a blank node (bNode)

Predicate

Global Property identified by URI

Object

Value of property

Can be URI, Literal or bNode

RDF/XML

RDF/XML = serialization of RDF in XML format

Several abbreviations

Difficult to integrate with other XML technologies

```
<rdf:RDF xmlns:s="http://subjects.org#"
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns="http://example.org#">
   <rdf:Description rdf:about="http://pictures.org/p1.jpg">
   <subject rdf:resource="http://subjects.org#Building"/>
   </rdf:Description>
   <rdf:Description rdf:about="http://euitio.uniovi.es">
   <name>School of Computer Engineering</name>
   <hasPicture rdf:resource="http://pictures.org/p1.jpg"/>
   </rdf:Description>
</rdf:RDF>
```


RDF as an Integration Language

A lot of information is currently published in RDF

Example:

DBPedia offers RDF triples of more than 80,000 persons, 293,000 places, 62,000 music albums, 36,000 films, etc.

RDF enables better integration of data

Transform the Web from fileserver to database

RDF Schema

Extends RDF with a Schema vocabulary

Class, Property, Resource,...

type, subClassOf, subPropertyOf,...

range, domain,...

RDF Schema enables simple inferences

SPARQL

Simple Protocol and RDF Query Language

Query language for the semantic web

Graph matching language

A protocol

Defines a way of invoking a service

WSDL description file

HTTP and SOAP bindings

It also defines XML vocabulary for results

SPARQL

Example

prefix r: <http://example.org#>

select ?n where
{ ?p r:subject r:Building.
 ?x r:hasPicture ?p .
 ?x r:name ?n .

"Find names of resources who have a picture whose subject is Building"

SPARQL

More features

Limit the number of returned results; remove duplicates, sort them, ...

Optional subpatterns (match if possible...)

Specify several data sources within the query

Construct a graph combining a separate pattern and the query results, or simply ask whether a pattern matches

Use datatypes and/or language tags when matching a pattern

Obtaining RDF

SPARQL Endpoints offer an integration mechanism

Big RDF datasets accesible to applications Example: DBPedia

Nowadays Data is mostly in Databases

It is not feasible to convert all databases to RDF More practical to convert on the fly

Several systems: Oracle 11g, Sesame, ...

RDF and HTML Problems to embed RDF/XML in (x)HTML It can be linked from an HTML page There are some "scrappers" to extract the structure of web pages and dynamically generate RDF Can be a solution for legacy web content Not very elegant 2 proposals for a more systematic way: GRDDL RDFa

OWL enables the description of new classes By enumeration Through intersection, union, complement Through property restrictions It is based on Description Logics Well defined semantics A subset of Predicate Logic Limited use of variables Binary predicates = Relationships Unary predicates = Classes

OWL and Unique Name Assumption

Web = Open System
2 different URIs could identify the same object
OWL does not support Unique Name Assumption

Person ⊆ hasFather = 1

hasFather(#peter, #william) hasFather(#peter, #bill) Person(#peter)

There is no error in the model

It infers that "#william" y "#bill" are the same

OWL: Open World Assumption

Traditional systems used Closed World Assumption

OWL uses the Open World Assumption

Singleton = ¬∃ isMarriedWith Person Married = ∃ isMarriedWith Person

Person(#Peter)
Person(#Mary)

Person(#James)

isMarriedWith(#mary,#peter)
Married(#james)

It infers: Married(#Mary)

It does not infer:

Married(#Peter)
Singleton(#Peter)

It also infers that James is married with someone... but it does not know with whom

OWL Layers

OWL was defined in 3 layers:

OWL Full:

No constraints

Superset of RDFS

Undecidable

OWL DL (DL comes from Description Logics)

Classes and individuals are separated

No characterization of datatype properties

Decidable

OWL Fragments

Subsets of OWL DL more tractable Examples: OWL Lite, DLP, EL++, etc.

OWL 1.1

An extension of OWL (in development)

It is based on more expressive DL

More property characterization possibilities:

Reflexive, Irreflexive, Antisymmetric

Increased datatype expressivity

N-ary datatypes

User-defined datatypes

Annotations and meta-logical statements

The name of the game

5 often used for ALC extended with transitive roles (R+)

```
Additional letters indicate other extensions, e.g.:

H for role hierarchy (e.g., hasDaughter ⊆ hasChild)

O for nominals/singleton classes (e.g., {Italy})

R for reflexive properties (e.g., knows)

I for inverse roles (e.g., isChildOf ≡ hasChild⁻)

N for number restrictions (e.g., ≥2 hasChild, ≤3 hasChild)

Q for qualified number restrictions (e.g., ≥2 hasChild.Doctor)

F for functional number restrictions (e.g., ≤1 hasMother)

S + role hierarchy (H) + inverse (I) + QNR (Q) = SHIQ

SHIQ is the basis for W3C's OWL Web Ontology Language

OWL DL = SHIQ extended with nominals (i.e., SHOIQ)

OWL Lite = SHIQ with only functional restrictions (i.e., SHIF)

OWL 1.1 = SROIQ
```

Rules

Rules based systems have a long tradition They can extend OWL expressivity Examples:

uncle(?x,?y) \leftarrow brother(?x,?z),parent(?z,?y) older(?x,?y) \leftarrow age(?x,?a),age(?y,?b), ?a > ?b.

Proposals:

SWRL = Adds prolog-like rules to OWL

Problem: Adding rules to OWL ⇒ Undecidable

RIF Working group

Uncertainty

Uncertainty handling = critical in practical applications

Specially in Image Information mining

Several approaches:

Extend DL with temporal and modal operators

Probabilistic Description Logics

Fuzzy Description Logics

Some Applications

BOPA Project

Ontology based search through governmental documents

WESONet Project

Multimedia information search

MultimediaN E-Culture

Art collections search & annotation

BOPA Project Goal: create a "bridge" between citizens and juridical jargon We used semantic Web vocabularies and tools Applied to Administrative documents Large dataset More than 35,000 legal documents 150,000 different terms Ontology based query expansion Pre-Query: Ask user to disambiguate meanings Post-Query: Sort results

Collaborative Tagging

Users provide tags to multimedia-assets
Tags are pseudo-free text

Tag recomendation systems improve quality

Emergent semantics: folksonomies

Users participate in the image tagging process

Tags are not logically consistent

Users have reputation levels

Experts Annotations

The creator of multimedia assets con give high-level descriptions

Descriptions link to concepts in high-level domain ontologies

Difficulty: Connecting different domain ontologies

We are developing/testing algorithms to combine these 3 levels of description

MultimediaN E-Culture

Searching and annotating cross-institutional heritage art collections

Based on Semantic web technologies

Interoperability between collections and vocabularies

Supports multiple distributed collections

Works with a large dataset

Near 9,000,000 triples

8 vocabularies

Conclusions

Semantic Web technologies = ready for deployment

It is easy to publish something in RDF

There are already huge amounts of data in RDF Linking to existing ontologies is already possible

Social barriers have to be overcome

"Open door" policy

Use standards

Connect to others so others can connect to you

A little semantics can have a lot of impact

The End

Questions?

More information: http://www.di.uniovi.es/~labra

