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ABSTRACT10

Autonomous underwater vehicles (AUV) constitute a specific type of cyber-physical system that utilize
electronic, mechanical, and software components. A component-based approach can address the
development complexities of these systems through composable and reusable components and their
integration, simplifying the development process and contributing to a more systematic, disciplined, and
measurable engineering approach. In this article, we propose an architecture to design and describe
the optimal performance of components for an AUV engineering process. The architecture involves
a computing approach that carries out the automatic control of a testbed using genetic algorithms,
where components undergo a ’physical-running’ evaluation. The procedure, defined from a method
engineering perspective, complements the proposed architecture by demonstrating its application. We
conducted an experiment to determine the optimal operating modes of an AUV thruster with a flexible
propeller using the proposed method. The results indicate that it is feasible to design and assess physical
components directly using genetic algorithms in real-world settings, dispensing with the corresponding
computational model and associated engineering stages for obtaining an optimized and tested operational
scope. Furthermore, we have developed a cost-based model to illustrate that designing an AUV from
a physical-running perspective encompasses extensive feasibility zones, where it proves to be more
cost-effective than an approach based on simulation.
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INTRODUCTION27

An autonomous underwater vehicle (AUV) is a submersible vehicle capable of operating underwater28

with full or partial independence of a human operator. AUV are specialized cyber-physical systems29

involving electronic, mechanical, and software components (Cares et al., 2022). These complex systems30

face diverse challenges such as safety, security, energy efficiency, and timing, from a multidisciplinary31

approach (Marwedel and Engel, 2016). Although these systems have intense software needs, their32

engineering still lags behind other disciplines (like PMBOK for project management or SWEBOK for33

software engineering). In particular, systematic, disciplined, and measurable approaches in cyber-physical34

systems are being proposed and modeling is still an open issue (Tyagi and Sreenath, 2021; Duo et al.,35

2022).36

In the component-based approach, components are the fundamental building blocks of a system,37

constraining and enabling system engineering. Components provide valuable features to the system they38

comprise in a composable, independent, and reusable manner, abstracting their internal complexities39

and enabling organized and well-defined interaction through interfaces. While the interaction among40

components via these interfaces imposes a discrete structure that restricts interactions, it also simplifies41

the variability of the system (Crnkovic, 2001).42

The fundamental concept behind the component-based approach is based on the modular design43

of systems into smaller parts, serving as building blocks that are replaceable and reusable through44

well-defined interfaces. In addition to its frequent use in software engineering, the component-based45

approach is employed across various engineering disciplines, ranging from electronic components, such46



as resistors, capacitors, and integrated circuits, in electronic engineering to bolts, nuts, gears, and bearings47

in mechanical engineering, and even precast concrete and steel beams in civil engineering (Gross, 2005).48

The component-based approach has also shown its usefulness when addressing complex systems such49

as cyber-physical systems, using components to support multi-mode system behaviors (Yin and Hansson,50

2018), for complementing model-based approaches (Sztipanovits et al., 2014), supporting the integration51

of autonomous robots (Gobillot et al., 2019), modeling applied to smart city systems interoperability52

(Palomar et al., 2016), and control-process based designing and implementation (Serrano-Magaña et al.,53

2021).54

In the case of AUV, the component-based approach has been acknowledged in several works. For55

example, this approach has been used in the development of a subsea-resident AUV for infrastructure56

inspection (Albiez et al., 2015), the creation of high-performance AUV control software (Ortiz et al.,57

2015), and the design of AUV streamlined hulls for survey and intervention missions (Ribas et al., 2011).58

Therefore, from an engineering point of view, there are critical tasks to solve, which can be addressed59

by simplifying each component’s operation modes without losing its core capabilities, and ensuring that60

these modes are optimal operation points in a real-world set. A classic way of solving this is by using61

simulation of environmental conditions, which also requires simulating the behavior of the integrated62

solution. This solution has been traditionally addressed by a modeling framework as Modelica or SysML63

and implemented in a corresponding tool as Open Modelica or Simulink (Fritzson, 2014; Nakajima et al.,64

2012).65

In abstract terms, the engineering approach is a tacit separation of concerns between design, understood66

as a theoretical approach to the solution, and a test, understood as an actual proof of concept. This67

separation is applied for parts and components, which is known as ‘hardware in the loop’ (Ledin, 1999),68

and the whole system under construction (Hehenberger et al., 2016). Modeling cyber-physical systems69

includes both the continuous physical phenomena and their computing control, which is usually controlled70

by discrete models. The simulation typically makes it possible to verify the requested features of the71

continuous part and the complete system in a hybrid design (Babris et al., 2019), i.e., conceptually,72

the design does not directly confront the actual world to particular requirements for a cyber-physical73

component at design time. This paradigmatic separation of concerns is still present in recent works such74

as the work of Ayerdi et al. (2020), where a taxonomy for design-operation for the case of continuous75

integration architectures for cyber-physical systems is proposed. In this case, one of the taxonomic76

approaches (a view or face) of the taxonomy is the lifecycle approach, in it, simulation is always present77

and real cases are considered as test cases and not as a possible design alternative. Corso et al. (2021)78

summarized a set of different heuristics and meta-heuristic algorithms from Artificial Intelligence and79

operational research for validating cyber-physical components, which were meant to be applied using the80

same simulation tools as those in our study. No alternative for their application is suggested. Bazydło81

(2023) proposes a UML-based design for cyber-physical systems. Although this work considers simulation82

as part of the life cycle, the authors recognize a problem at the level of non-standard hardware description83

language (HDL) as part of the diagnosis. This means that the assumption is that the control of the84

embedded component, being part of a system, is delegated to a controller who knows its internal behavior.85

This approach develops this line, and its generated code from UML models overcomes the problem by86

generating specific HDL code.87

In the specific case of an AUV thruster under an integrated point of view, using a flexible propeller88

may result in irregular thrust, however, it also provides advantages over the use of a rigid propeller, such89

as improved prevention of breakage and jamming, which is especially useful in exploration missions90

in an unknown environment. In this scenario, the AUV’s navigation software must compute all the91

control signals for efficient propulsion requiring the system to be equipped with all necessary sensors and92

sufficient data flow to continuously and timely measure and compute the thrust to apply and its resulting93

performance.94

This situation can change when using an AUV thruster component, where its controller, driver, motor,95

gearbox, and flexible propeller are integrated. Such a component could have optimized and predefined96

operating modes, like an off mode, optimal thrust mode, and maximum thrust mode. In this case, the97

AUV’s navigation software only needs to handle these three operating modes, simplifying interactions98

with the thruster component. As expected when applying a component-based approach, this approach99

ensures that the efficient operation complexities of the AUV thruster component are hidden from the other100

AUV components and internally managed by itself. As a result, it reduces the computing requirements,101
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minimizes communication flow, and simplifies the complexity of AUV navigation software. Ultimately,102

this streamlines the overall system engineering process.103

Therefore, there is no doubt about the convenience of a component-based approach. However, the104

error propagation from components to the integrated simulation is a serious issue for cyber-physical105

systems. It has been addressed by continuous and discrete simulation techniques (Mittal and Tolk, 2020),106

stochastic methods (Fabarisov et al., 2020), and even machine learning approaches (Yusupova et al., 2020).107

It is preferable use a component-based approach, and to simplify the component flow data and to reduce108

the error propagation in the integrated simulation.109

In this study, the optimal operation modes of cyber-physical components were obtained by running an110

optimization algorithm in an actual set, namely a physical-running searching algorithm. Therefore, the111

proposed approach aims to enhance the performance of the AUV by identifying the optimal operational112

modes of each component and designing their behavior and interactions with other components in a113

discrete and targeted manner, including the complexities of the natural environment. The expected impact114

is that the costs of using physical components in an actual set should find inflection points compared115

to the computational costs and the number of engineers’ hours in the corresponding simulation tasks,116

especially if the engineers want to avoid error propagation.117

Under this approach, it is not about introducing arbitrary discretization into the componentization118

process solely to reduce complexity in AUV engineering. Doing so may compromise performance and119

hinder the ability to address problems within the environment effectively. Instead, the AUV should be120

viewed as the solution while its environment presents the problems it must resolve. Therefore, for the121

AUV to complete its mission, its operational capabilities must exhibit only enough flexibility to match the122

actual variability of its environment, which is a classic cybernetic perspective about what intelligence123

is (Ashby, 1956). In the case of an AUV thruster component, the component’s variety could be then124

reduced to the number of states having ‘meaning’ for the controller system, for example: inactive, uniform125

motion, and evacuation modes.126

A notable feature of using a physical-running algorithm is the engineering creation of pre-optimized127

component choices using a real set to obtain them. We understand that this is not the classical engineering128

perspective, however, inexpensive and high-capacity electronic elements and the easily obtained mechan-129

ical components (provided, for example, by 3D printers) make it possible. Moreover, to anticipate its130

possible impacts, we claim that this engineering alternative could save the costs of simulation units and131

improve the performance of the integrated simulation of the final product by: (i) reducing the complexity132

of controller-controlled pairs, (ii) improving the accuracy of the integrated simulation by a better and133

simple description of component behavior, and (iii) reduced energy consumption due to pre-optimized134

components. However, what we present in this document is what we understand as its feasibility. The135

feasibility of a physical-running approach is not clear because it has strong theoretical drawbacks such136

as: (i) convergence time is significantly slower due to mechanical movements, (ii) it requires a physical137

set for testing, and (iii) it requires an additional device for sensing and controlling. These three elements138

constitute an additional cyber-physical set for realizing this design choice.139

Therefore, to demonstrate their feasibility and economic viability in the following sections, we propose140

an alternative for identifying the optimal operating modes for components in a component-based approach141

by a physical-running approach. First, we propose a general architecture for obtaining optimal operation142

modes for components. Second, we show that genetic algorithms provide a search-based approach feasible143

for use in an actual set. Third, we propose how to use a genetic algorithm and how to adapt it for use under144

a physical-running approach. Finally, we demonstrate the use of the proposed framework by determining145

the optimal capabilities of a soft-propeller component.146

ARCHITECTURE FOR EVALUATING COMPONENTS USING REAL SETS147

The component-based approach offers numerous benefits directly related to best practices in software148

engineering. This approach demonstrates software engineering principles such as abstraction, modularity,149

encapsulation, separation of concerns, and reuse by encapsulating and hiding the complexities of their150

operation within components and providing well-defined and simplified interfaces for interaction with151

other components.152

The cyber-physical components are hybrid in nature and expressed in the computational space through153

data processing and communication interfaces and in the physical world through their performance as154

sensors or actuators. For instance, a flexible propeller component can integrate a communication interface155
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to receive control signals specifying the desired rotation speed employing a protocol. This component156

internally processes these signals using a controller to activate its motor driver, motor, and gearbox. All157

parts work together to deploy the desired rotational effect on the flexible propeller, which will generate158

thrust in the physical world. This cyber-physical component exhibits communication capabilities to159

interact with other components in the computational space and also shows actuation capabilities in the160

physical world while encapsulating its internal complexities. In the atomic interactions between these161

components, the required resources, such as time and energy, are not dependent on the specific requests’162

message contents for rotation speed in the computational space. However, in the physical world, the163

situation is entirely different. When applied to the flexible propeller, there will be rotation speeds that164

will produce better or worse thrust-to-consumption ratios, which, given the resource scarcity context in165

which the AUV operates, makes it necessary to work on optimal regimes. Operating only in optimal166

regimes will reduce the variability of interactions, limit the range of applicable control signals to the167

thruster component only to the optimal ones, and consequently simplify the AUV engineering process. For168

instance, the soft-propeller component could be operated in three modes: minimum thrust for precision169

maneuvers, optimal thrust for displacement with the best thrust-to-consumption ratio, and maximum170

thrust in the case of an emergency.171

Thus, identifying the optimal or notable operational modes for cyber-physical components is an entry172

point for applying the component-based approach in engineering cyber-physical systems, particularly for173

AUV. In cases where information regarding the notable or optimal operational modes of a given component174

is unavailable, testing and experimentation can be employed as alternative methods to determine the175

components’ physical properties.176

Figure 1. Architecture for evaluating components in a cyber-physical loop.

Figure 1 shows the architecture for evaluating components using real sets in a cyber-physical loop177

that allows the integration of the physical world and computational space in an iterative process to178

determine the notable operating modes of the cyber-physical component under evaluation. In each179

iteration, the physical-running algorithm produces the action vector that will be executed by the cyber-180

physical component, thereby altering its physical environment as a result of its action. Its respective181

effects will be sent back to the algorithm to provide feedback for the search process of the notable182

operating modes. In each cycle, the physical running algorithm measures the performance of the action183

vector using a cost function expressed in terms of the variables that hypothetically affect the behavior of184

the cyber-physical component. Once the algorithm completes the optimization process, it will find an185

operation mode associated with the cyber-physical component according to the defined cost function.186

Therefore, the design process of the cyber-physical component under this architecture involves at least187
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two well-defined stages. In the first stage, the cyber-physical component must be prepared to implement a188

protocol capable of receiving action vectors from the physical-running algorithm and providing access189

to its entire operating spectrum. This allows the algorithm to explore any point within the component’s190

performance possibilities during the search until notable points are found, which will then be reported as191

optimal operation modes. In the second stage, the cyber-physical component must implement a protocol192

capable of receiving action vectors from the physical-running algorithm while offering only a discrete193

set of options to be activated. These options correspond to the optimal operation modes detected by the194

algorithm in the previous stage for optimal operating performance alternatives from the cyber physical195

component. When the physical-running algorithm is instantiated, the optimal operation modes will196

align with the local minima detected by the algorithm. These modes will be assigned as the operational197

configurations for the final component design.198

GENETIC ALGORITHMS IN AN AUV DESIGN PROCESS199

Genetic algorithms (GA) are a type of optimization algorithm inspired by natural selection and genetic200

inheritance. By leveraging the principles of evolution and natural selection, genetic algorithms can201

effectively search for optimal solutions (Holland, 1975). Genetic algorithms aim to find the best solution202

to a problem by iteratively evolving a digital population of potential solutions through mutation, crossover,203

and selection. They are helpful when dealing with complex problems where traditional optimization204

techniques may not be sufficient or feasible. One of the significant advantages of genetic algorithms is205

their ability to handle cost functions that present drawbacks, such as large search spaces, nonlinear and/or206

not straightforward cost functions, namely, non-derivable or discrete. These drawbacks make it difficult207

or impossible to use traditional optimization methods, and genetic algorithms can provide a rapid, robust,208

and effective alternative (Kowalski et al., 2021; Cheng et al., 2022; Deng et al., 2023; Kumar et al., 2010).209

As shown in Figure 2a, the genetic algorithm emulates the natural evolutionary process through a210

few sequential steps (Haupt and Haupt, 2004). Once the cost function, variables, and parameters are211

configured at the beginning of the process, it randomly generates an initial population, evaluates each212

population’s element, and ranks them according to their performance. Next, the best-performing elements213

are selected and combined to create the next population generation, with mutations introduced to promote214

diversity. This process is repeated until the algorithm converges or a predetermined stopping criterion is215

met, such as reaching the maximum number of allowable iterations set in the first step.216

The terms ‘fitness function’ and ‘performance’ will be used henceforth to describe what was previously217

referred to as ‘cost function’ and ‘cost’ for each chromosome due to the terminology employed by the218

technology we use in genetic algorithm execution. Furthermore, to prevent ambiguity, we reserve the219

term ‘cost’ for discussing the resource expenditure in a comparative analysis detailed later in this article.220

Figure 2b shows a genetic algorithm instantiated version designed to find the optimal operation for the221

case of a soft-propeller component. The first step involves specifying the fitness function definition and the222

genetic algorithm parameters, such as stopping and convergence criteria. The fitness function must express223

a performance measurement involving a components’ computational model, which must accurately and224

precisely reflect the attributes and behavior of the propeller component as faithfully as possible. In the225

second step, the algorithm produces the first generation by randomly generating rotational speed values.226

These values are then individually tested in the next step to evaluate and rank their performance. Based on227

this evaluation, the algorithm selects the best performance elements, mates them by adding mutations, and228

creates a new generation in an iterative process. This process continues until the element that produces229

the best performance is identified: for example, the rotational speed that produces the best ratio between230

thrust and power consumption on the soft-propeller component. This way, the algorithm can identify an231

optimal operation mode for this component. At this point, it is essential to note that the quality of the232

computational model is critical to the algorithm’s ability to identify the optimal operation mode for the233

modeled component. Thus, the computational model’s accuracy and precision will directly impact the234

resulting operational modes.235

However, obtaining a faithful and precise computational model of a physical component is a complex236

process; from non-rigid components like soft thrusters (Sodja et al., 2014) to soft-robot applications,237

where the absence of rigidity results in infinite degrees of freedom which, consequently, makes it more238

difficult to predict its behavior (Wang and Chortos, 2022). Any component whose performance depends239

on the variability of the physical world poses challenges from a modeling point of view. Their material,240

mechanical resistance, rigidity and flexibility, thermodynamic and electromagnetic behavior, interactions241
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Figure 2. Genetic algorithm instantiation for finding flexible propeller thruster component performance.
(a) Flowchart of the genetic algorithm. (b) Instantiated version for specific application.

with other components, and non-linear behavior in boundary conditions are just some factors that increase242

the time and resources involved in obtaining reliable computational models.243

Obtaining an accurate and precise computational model for an AUV component can be complex and244

costly. When evaluating the AUV-thruster components to identify their optimal modes of operation, a245

decision must be made regarding whether to invest in a computational model that faithfully represents246

the physical component or to directly evaluate the physical component and avoid the cost of model247

preparation. It is also important to consider that evaluating a physical component may be much slower248

than using a computational model even though computational models also require a great deal of time and249

effort to create a simulation model. Therefore, the decision to model or not to model depends on different250

factors, including the nature of the problem to be addressed, the costs and benefits of alternatives, and the251

available resources and time. Later, a comparative analysis is conducted to help elucidate this matter.252

In fact, when a sufficiently adequate computational model for a physical component is either too253

expensive or simply not feasible, the decision may be made to skip modeling in favor of directly254

discovering, assessing, and specifying the physical component operation modes by using a real set for255

executing a physical-running algorithm. In particular, using a physical-running version of a genetic256

algorithm to overcome the absence of a reliable computational model. In Figure 2b, the third step is257

highlighted in blue to indicate that it could include a physical component. In particular, the resulting thrust258

force and power consumption should be obtained from a real set in place of the simulation’s output to find259

each rotational speed performance and continue the instantiated genetic algorithm execution process.260
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USING GENETIC ALGORITHMS UNDER A PHYSICAL-RUNNING APPROACH261

Despite the savings in a mathematical simulation model, it is necessary to use a physical component for262

connecting the digital algorithm to the physical environment. In this way, we acknowledge its benefits but263

also the additional costs. Therefore, the appropriate communication interfaces must be integrated between264

the physical world where the physical component operates and the computational space where the genetic265

algorithm runs.266

In Figure 2a, the step ‘Find cost for each chromosome’ should implement communication between267

the genetic algorithm and the physical component, which, must implement communication capabilities268

through well-defined interfaces and offer functionality at a higher level than its physical part only.269

Due to this physical component’s ability to exchange and process messages and act as a counterpart270

in a communication process, hiding its internal complexities, we will refer to it as a cyber-physical271

component (Thramboulidis and Christoulakis, 2016).272

Thus, the cyber-physical component will perform the role of the computational model. This approach273

allows dispensing with the need for a computational model but could result in significantly different274

timing. This can lead to noticeable waiting intervals while the physical component is instructed to execute275

an action, starts its execution, and reaches a stable state to measure the environmental effects.276

Figure 3 shows a flowchart of an adapted genetic algorithm to determine the properties of a cyber-277

physical component in a physical-running way. This adapted genetic algorithm saves a component’s278

computational model and directly uses the cyber-physical component in the physical world to find the279

performance of each chromosome in an analog computer manner. This way, this adapted algorithm280

can directly determine the component’s optimal operation modes automatically guided by the genetic281

algorithm search process. As shown in the step ‘Find the performance of each chromosome’, the adapted282

algorithm sends messages to the cyber-physical component. These messages contain instructions for283

actions to be carried out in the physical world. When the cyber-physical component receives these284

instructions, it executes them by changing its internal state and producing effects on its environment.285

Figure 3. Physical-running genetic algorithm: Dataflow between the adapted genetic algorithm and its
physical component.

In general terms, the internal state of a cyber-physical component is defined by the values of its286

internal variables resulting from its operational performance. The effects, in contrast, are determined by287

the changes in environmental variables, which are or should be influenced depending on the component’s288

functioning. For instance, in the case of a cyber-physical heating component, its internal status could289

be characterized by its energy consumption, while the effects could be represented by the temperature290
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achieved in the surrounding air following a heat exchange process. If an automatic transmission electronic291

system is regarded as a cyber-physical component, its status variables could include the rotational speeds292

of its gears, and the temperature of the lubricating oil, and the effects would be the transmitted torque. In293

the case of a cyber-physical component for the cruise control system of an autonomous vehicle, the status294

variables could include the vehicle’s target speed, the distance to the vehicle ahead, and the engine’s status.295

On the other hand, the effects might be represented by the actual speed of the vehicle, fuel consumption,296

and control actions exerted on the powertrain.297

In the example of the soft-propeller AUV thruster, the instructions received by the component are the298

rotational speed that it must develop. This component’s internal status is given by its energy consumption,299

and it changes as a result of applying the action, producing effects on its environment, i.e., it produces300

thrust.301

Figure 4. Detail for ‘Find the performance for each chromosome’ step of the physical-running genetic
algorithm.

The adapted algorithm, which we will call the physical-running genetic algorithm, does not evaluate302

the performance of each chromosome traditionally (4). Instead, it evaluates the cyber-physical component303

directly on the testbed in the physical world. The process consists of evaluating each chromosome to304

build a ranking, which will subsequently allow for the selection of those with better performance (4).305

Through this process, an unranked chromosome is selected. The chromosome is subsequently sent to the306

cyber-physical component through a communication interface, which receives the message and interprets307

it as instructions to execute. Then, the cyber-physical component must execute the instructions. Whether308

the role of the cyber-physical component is to sense or act, the operation in the physical world will take309

time to achieve the desired physical result. Next, data acquisition must be performed on time once the310

necessary time interval has elapsed. This time interval is a parameter that must be previously configured,311

as shown in Figure 4 where it is represented by the box labeled ‘timing settings.’312

For example, the flexible propeller of the AUV thruster component will receive messages containing313

the instructions to act in its environment, that is, the desired rotation speed. The consumption and thrust314

data will be measured once the specified rotation speed is reached. An appropriate timing setting must be315

configured to ensure the propeller reaches the desired rotation speed. Once the data have been obtained316

on the internal state and the effects produced by the cyber-physical component, the performance will be317

evaluated according to the fitness function in the ‘Assess performance’ step. In the example mentioned,318

the fitness function will be the thrust-to-consumption ratio, allowing the ranking of the population319

chromosomes according to their performance. The better-ranked chromosomes, namely, those having the320

best thrust-consumption ratio, will be positioned higher in the ranking. The process proceeds iteratively321

until all elements of the population have been ranked.322
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This architecture is designed to evaluate cyber-physical components using genetic algorithms to deter-323

mine their optimal operating modes. The optimal mode is achieved when the component’s performance324

best achieves a design goal. We have not imposed strict restrictions on the platform required to implement325

this architecture. However, we have identified the need for at least one computing unit for executing326

the adapted genetic algorithm linked to the cyber-physical component through a network connection327

or link, allowing them to establish communication. The cyber-physical component should integrate its328

computing unit for communication, data acquisition, and control. Examples of these computing units329

include single-board computers and/or microcontroller units. Finally, a well-equipped infrastructure is330

necessary to accurately assess cyber-physical components and determine their optimal operating modes,331

including a testbed with sensing elements capable of measuring relevant variables. These variables should332

include the component’s internal state and the resulting operation effects. To ensure an accurate evaluation,333

the test bed must also replicate the operational conditions as closely as possible.334

Procedure for applying the physical-running genetic algorithm335

Adopting a general methodological approach for a specific engineering problem is known as situational336

method engineering (Henderson-Sellers and Ralyté, 2010). The assumption is that a method is composed337

by method fragments or chunks, which can be specialized and arranged in different ways to obtain specific338

methods for specific situations. Usually, the static part is modeled by class diagrams, and the dynamic339

part is modeled by transition diagrams. Following these guides, we propose a procedure for applying an340

adapted genetic algorithm to identify optimal operation modes for cyber-physical components under a341

physical-running approach.342

We use a state machine diagram to model the procedure, as shown in Figure 5. After identifying the343

cyber-physical component variables that define its state and are required to measure its performance, a344

testbed must be set up to replicate physical operations as accurately as possible. The testbed setup must345

allow for recreating the operating conditions in which the component under evaluation will perform and346

should include all necessary physical elements, power supplies, sensors, and actuators to continuously347

monitor and control the cyber-physical component’s operation and performance throughout the entire348

algorithm execution process. In the next step, the communication loop must be configured between the349

cyber-physical component and the computing unit where its counterpart, the adapted genetic algorithm,350

will run. The adapted genetic algorithm can be executed after configuring the input variables, fitness351

function, algorithm stop criteria, and timing settings. During execution, the algorithm physically tests352

each element of every generation directly on the cyber-physical component, selecting the best ones for353

each generation based on the configured algorithm parameters. The data acquisition for each chromosome354

takes as much time as the configured timing settings. If the timing settings are too short, the execution355

may be faster, but the measurements may be inaccurate. Conversely, unnecessary waiting time may356

occur if the timing settings are too long. In the soft-propeller component example, excessively brief357

timer settings can result in data acquisition occurring before the propeller reaches the specified rotation358

speed, leading to inaccurate thrust and performance measurements. Therefore, we recommend allowing359

sufficient time for the propeller to reach a stable speed before stopping and to ensure a non-turbulent360

state before starting. This balance is incorporated into the proposed physical running approach alongside361

established parameters in genetic algorithms, such as the initial population size and stopping criteria,362

which have received attention in the genetic algorithm literature (Diaz-Gomez and Hougen, 2007; Safe363

et al., 2004).364

The results of this physical-running genetic algorithm will reveal the optimal operation modes365

according to the configured parameters. In the example of the soft-propeller component, the result will366

be the optimal thrust mode operation ratio when the fitness function is the thrust-power consumption367

ratio. Additionally, the results can be the maximum thrust capacity when the fitness function considers the368

measured thrust. Finally, these optimal operation modes of the component can shape the cyber-physical369

component specification in a component-based approach.370

EXPERIMENTAL EVALUATION OF AN AUV THRUSTER WITH A SOFT PRO-371

PELLER372

We analyzed an AUV thruster with a soft propeller as a case of a physical-running algorithm for character-373

izing a cyber-physical component. This component comprises a microcontroller board based on the Atmel374

SAMD21 unit (Arduino MKR1000). The microcontroller board has capabilities for WIFI communication375
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Figure 5. Procedure for applying physical-running genetic algorithms.

and communication through a serial port. It is connected to a dual full-bridge motor driver L298N, which376

delivers power to a 12V DC brushed motor. After testing several 3D-printed propeller prototypes that377

were not sufficiently flexible, we decided to mount a flexible clear PVC plastic propeller with two blades.378

Each blade was 65mm long, 20mm wide, and 0.7mm thick, and having a pitch angle of 90 degrees. It was379

attached to the DC motor shaft to rotate at a speed proportional to the pulse width modulation (PWM)380

signal produced by the microcontroller.381

We measured two variables to determine the performance of the cyber-physical component: the thrust382

it can produce and its power consumption. This requires weight and power sensors, which are not part of383

the component and were used here for data acquisition.384

In preparing the testbed, a rigid structure capable of holding the component over a bucket of water385

was implemented, submerging only the flexible propeller. The structure was built using ad-hoc 3d printed386
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PLA fixtures, PVC tubes, and fittings. The direction of rotation was arranged so that the propeller pushed387

the water downwards. A weight sensor was installed to measure the increase in the weight of the bucket388

when the propeller rotates, that is, the thrust measured in grams. Since the motor’s power supply operates389

at a constant and known voltage of 12V DC, a current sensor was installed in series to measure the motor’s390

power consumption proportionally in amperes.391

Figure 6. Main testbed components.

Figure 6 depicts, sequentially from left to right, the key components of the testbed. Panel (a) illustrates392

the installation of the primary structure supporting the motor. This structure incorporates (c) custom393

3D-printed elements designed to adjust the propeller’s submersion depth in water. The base, resting394

on (d) fastenings, ensures stability, complemented by the structure’s material properties. In (b), the395

interconnected electronic components are visible, including the microcontroller board, motor driver,396

and current and thrust sensors. Panel (e) shows the USB cable connected to the microcontroller board,397

establishing a serial communication link. Explicit labels have been included to denote the effects induced398

by the cyber-physical component’s action, such as the thrust generated by the rotation of the flexible399

propeller. This thrust is measured by a weight sensor placed beneath the water-filled container where400

the propeller is submerged. The figure also highlights the cyber-physical component’s status, indicated401

by the overall power consumption, measured using a current sensor. Another dynamic aspect illustrated402

in the figure is the transmission of chromosomes. Initially sent from the executing genetic algorithm403

on a computer, these chromosomes sequentially reach the microcontroller via the serial port. They are404

then relayed to the motor driver to assess the corresponding effects and status. These effects and status405

are captured by the microcontroller from sensors and transmitted back to the computer via the serial406

link. There, the genetic algorithm ranks each chromosome and iterates the optimization process until407

completion based on predefined termination criteria.408

Figure 7 provides an overview of the two computing units constituting this distributed system. The409

genetic algorithm is executed on a computer, and it has been modified to evaluate each chromosome410

directly in the testbed or physical world, bypassing a computational model, as previously mentioned. The411

second computing unit in this distributed system is the microcontroller, which forms the cyber-physical412

component in conjunction with the motor driver, motor, and flexible propeller. In the setup depicted413

in the figure, sensors have been added to measure the status of the cyber-physical component (current414

consumption) and the effects in the physical world (thrust). These readings are crucial because, when415

relayed back to the genetic algorithm running on the computer, they enable the performance assessment of416

each chromosome according to a fitness function. In the search for an optimal operation mode for efficient417

AUV movement, the fitness function defined for identifying the most efficient chromosome, i.e., the418
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rotational speed with which the cyber-physical component performs with the best thrust-to-consumption419

ratio, is:420

PhysicalPer f ormance(chromosome : rotational speed) =−1× Thrust
Current

. (1)

The rationale for multiplying by the additive inverse arises because the version of the genetic algorithm421

is based on the ga() function included in the R software (RStudio 2022, R v4.2) and is designed to optimize422

by searching for minima. Thus, multiplying by −1 facilitates the search for the best thrust-to-current423

ratio.424

Figure 7. Testbed for implementing a physical-running genetic algorithm on a flexible-propeller thruster.

According to the pseudocode presented in Algorithm 1, the microcontroller board was programmed to425

report data once the rotation speed was reached. As there is no motor shaft rotation speed meter, the device426

waits for a time interval (delay of 3.5 seconds) before reporting data to ensure the instructed rotational427

speed is reached by the motor shaft before taking the measurement. This specific behavior is part of the428

internal operation of the cyber-physical component and is not accessible from the computer side.429

On the computer side, the genetic algorithm was configured to operate in accordance with the430

pseudocode presented in Algorithm 2. As previously mentioned, the modified algorithm fundamentally431

relies on the ga() function available in the R software, with the primary modification being the introduction432

of a custom fitness function. Unlike its traditional application, which involves evaluating the performance433

of each chromosome using a mathematical formula or model, this modified version evaluates chromosomes434

directly in the physical world. This is achieved by having the PhysicalPer f ormance() function send the435

chromosome under evaluation, i.e., the rotational speed, to the cyber-physical component via the serial436

port. The cyber-physical component then returns the status and effect measurements from the evaluated437

chromosome through the same port. These statuses and effects, relayed back to the computer from the438

microcontroller, are used by the modified fitness function to calculate the chromosome’s performance. As439

previously explained, this performance is gauged by the thrust-to-consumption ratio, aiming to find the440

chromosome that enables the most efficient movement of the AUV.441
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Algorithm 1: Cyber-physical component pseudo-code
Computing Unit: Microcontroller
Input: serial port (for reading instructed rotational speed)
Output: PWM signal to motor driver pin, and Data sent back through serial port (thrust and

current sensor readings)

Define: motor driver pin;
Define: thrust sensor reading;
Define: current sensor reading;

Function setup:
// Initialize and calibrate sensors

calibrate thrust sensor;
calibrate current sensor;

Function loop:
serial port.read instructed speed;
motor driver pin := instructed speed; // Send rotational speed to motor driver

delay;

// Obtain thrust and current sensors readings after delay

serial port.read thrust sensor reading;
serial port.read current sensor reading;

serial port.write thrust sensor reading, current sensor reading;

Algorithm 2: Physical-running GA pseudo-code
Computing Unit: Computer

Input: serial port (for getting thrust and current readings sent back from microcontroller)
Output: Optimal cyber-physical component rotational speed: Best ratio thrust/current as a result

of R software ga() genetic algorithm function

Define: rotational speed;
Define: thrust;
Define: current;

Function PhysicalPerformance(rotational speed):

// Send rotational speed to microcontroller through serial port

serial port.write rotational speed;
delay;

// Get thrust and current readings from microcontroller

serial port.read thrust;
serial port.read current;

return (−1× thrust/current);

// The ga() function in R software, which implements a genetic

algorithm, utilizes the parametrized ‘PhysicalPerformance()‘

function to evaluate each rotational speed, treating these as

chromosomes.

ga ( fitness function: PhysicalPerformance(chromosome), lower, upper, population size,
consecutive generations without improvement, maximum iterations number );

Report and store results;
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As shown in Algorithm 2, the specific parameters allowed the genetic algorithm to operate in real-442

valued mode using floating-point representations for rotation speed values. These parameters limited443

the population size of each generation to seven chromosomes and defined the termination criteria as444

reaching ten consecutive generations without performance improvement or completing a total of forty-five445

iterations. Regarding timing settings, the fitness function was designed to introduce an 8.2-second delay446

between each rotation speed evaluation, ensuring that the water turbulence and propeller rotation had447

ceased, thus preventing undesired impacts on the measurements. This execution of the genetic algorithm448

identified the optimal performance for efficient movement at a rotation speed control signal of 67% (PWM449

signal of 172 over an interval from 0 to 255). Through this method, the genetic algorithm successfully450

identified an optimal operation mode for efficient movement.451

Figure 8 displays all the data points generated by the physical-running genetic algorithm during452

its execution. The X-axis represents the applied rotation speed, the Y-axis indicates the thrust/current453

consumption ratio, and the marked point is the obtained value in the final generation of the genetic454

algorithm. Notably, the algorithm tends to produce different Y values across generations at almost the455

same X values, suggesting that factors beyond the algorithm’s operation may be at play. Possible causes456

could include mechanical deformations, sensor limitations, and actuator constraints.457

Figure 8. Physical experiment chart, thrust/current vs. rotational speed control signal (PWM signal
0-255).

We can apply the same procedure by modifying the fitness function definition to explore alternative458

optimal operation modes. For instance, if we want to search for the maximum thrust, we can define459

the fitness function as the additive inverse of the measured thrust. This way, the genetic algorithm460

implemented in R will find a minimum corresponding to the maximum thrust capacity of the AUV thruster461

with a flexible propeller.462

COMPARATIVE ANALYSIS463

Simulation activities are significant in the fields of robotics, autonomous vehicles, and cyber-physical464

systems. As an alternative to constructing real artifacts, simulation serves as a valuable tool for modeling465

and design, facilitating the inclusion of smart features, and mitigating implementation costs and the need466

for physical testing beds. However, while its benefits have been detailed, issues such as insufficient speed467

for required complexity, composability, uncertainty, and calibration have also been recognized (Choi468

et al., 2021). Years ago, a component-based approach seemed to be in opposition to a model-based469

approach in vehicular systems; however, it was eventually recommended to integrate them under a unified470

approach (Torngren et al., 2005). In our component-based approach, we consider the existence of an471

integrated simulation for the complete system or simplified simulations for an early feasibility assessment472

of components.473
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Therefore, it is reasonable to assume that using a physical approach rather than a simulation is more474

convenient in some applications. Naturally, if we are discussing an autonomous vehicle for exploration on475

the planet Mars a physical-running approach in the same Mars it will not prove economically feasible.476

Therefore we do not advocate for doing away with simulations. We are, however, stating that there are477

situations where is more convenient to adopt a physical-running approach for establishing the optimal478

performance of components in place of simulation. In the previous section, we demonstrated that the idea479

is feasible for a flexible propeller component and have considered showing a general comparison from480

a cost perspective to show its broader application. Helbig et al. (2014) formulated a cost model for a481

component-based approach in automation solutions. We refined some of their concepts and established482

some differences in the cost of their model, including the cost of running it in the physical environment.483

We extracted the commissioning unitary testing and called it integration. Additionally, we conducted484

a review on https:www.glassdoor.com, and found no significant differences between the salaries of485

simulation engineers and software developers for embedded systems or similar cyber-physical engineering486

roles. Therefore, in the proposed comparative cost model we focused on the time spent on projects, similar487

to Helbig et al. (2014). We employed the symbols in Table 1 for a cost-based comparative.488

N Number of components
I Integration cost

Hk Hardware cost of component k
Mk Software and Modeling cost of component k
Sk Simulation cost of component k
Pk Physical cost for prototyping and testing component k

superscript S Engineering approach with simulation in component design
superscript P Engineering approach with physical-running in component design

CS Total cost of the engineering approach with Simulation
CP Total cost of the engineering approach with Physical running

Table 1. Symbols in the comparative of approaches

Using these symbols we have the total cost of the simulation approach as expressed in equation 2 and489

the total cost of physical running in equation 3.490

CS = IS +
N

∑
k=1

(
HS

k +MS
k +SS

k +PS
k
)

(2)

CP = IP +
N

∑
k=1

(
HP

k +MP
k +SP

k +PP
k
)
. (3)

The usual and tacit assumption is that CS < CP, however, we support that there are cases where491

CP <CS. Due to this, we have sustained that there are inflection points, which means that CS =CP. This492

general formulation was modified to adapt it to our case, i.e. a physical-running case. To do that we will493

consider some factors to get a simplification in the inequation CP ≤CS. Therefore, we will assume that the494

integration costs of using a simulation-based design at component levels and simulation in the integration495

is greater than only in the integration phase at the physical-running approach. Thus we will assume that496

there is a factor, fI > 1 for this proportion. Also, we assume that there is a factor for describing the497

software, modeling, and simulation costs in the physical-running approach. It will be only a part of the498

corresponding costs in the simulation-based approach. On the contrary, a physical-running approach499

will have additional costs due to the physical set for designing. Thus fP < 1 means that the physical-set500

costs in the simulation-based approach will be only a part of the costs in the physical-running approach.501

Regarding the hardware cost, we will assume that there are no differences because, if the approach means502

some hardware-cost difference, we can allocate the expense in Pk. All these assumptions are without loss503

of generality (WLOG) and they are summarized in Table 2.504

Using these assumptions to identify the inflection points and substituting the expressions related to CP
505

in the equation CP −CS = 0 we obtain the Equation 4.506
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IS = fI × IP CP <CS =⇒ fI > 1
∑MS = fM ×∑MP CP <CS =⇒ fM > 1
∑SS = fM ×∑SP

∑HS = ∑HP Hardware costs are equivalent in both approaches
∑PS = fP ×∑PP CP <CS =⇒ fP < 1

Table 2. Assumptions for sensitivity analysis

(1− fI)IP +(1− fM)∑
(
MP +SP)+(1− fP)∑PP = 0. (4)

Consequently, a multidimensional space is defined, representing several feasible combinations of507

factors. For instance, with IP = 20, MP +SP = 4, PP = 48, fI = fM = 2, and fP = 0.5 an inflection point508

emerges, as equations 2 and 3 yield identical values. These inflection points demarcate the boundary509

between the desirability of the two alternatives. In the case of the flexible propeller, approximately510

14 hours were allocated to physical experimentation, 6 hours to modeling and distributed software.511

Integration efforts were approximated to 8 hours, employing factors fI = fM = 2.2 and fP = 0.4. The512

resultant time savings for this model amounted to 30%. Figure 9 illustrates a comparison of these two513

approaches. The red plane delineates the convenience zone for the simulation-based approach, while514

the blue plane indicates the convenience for the physical experimentation approach. The right segment515

showcases the region of the plane (the dark blue section) where the factors yield feasible combinations516

using the values from the initial example.517

Figure 9. Minimal costs and factor feasibility

DISCUSSION518

Although models of physical behaviors offer many advantages, such as precise documentation, easy519

communication, and use in support simulations, we have also identified challenges due to their cost.520

Consequently, there are situations where it is more cost-effective to experiment and design a component521

directly in a physical set rather than invest in modeling and perfecting a computational model for it.522

We have presented the case of an AUV thruster with a soft propeller, a cyber-physical component that523

includes a microcontroller board, a driver, a motor, and a flexible prop. The flexible propeller provides524

features such as a lower possibility of getting stuck or damaging other objects while spinning. However, it525

also introduces complexities and challenges to the modeling process, for example, making it difficult to526
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predict the thrust that can be achieved under a given rotational speed or predict its maximum thrust before527

its geometry yields due to water resistance.528

According to the execution log of the genetic algorithm, we obtained a nearly ideal chromosome529

in the early iterations, and, as anticipated, its descendants persisted until the final generations. This530

observation suggests the possibility of reaching an almost optimal solution in fewer iterations, resulting in531

reduced waiting times. Consequently, this leads to new avenues for exploration in relation to the specific532

configuration of the genetic algorithm, particularly regarding the identification of stopping criteria that are533

tailored to the nature of the problem under study. This insight could significantly enhance the efficiency534

of the algorithm, reducing computational overhead and time while still achieving high-quality solutions.535

One additional observation from this study is that the fitness function produced varying thrust-current536

ratios for similar rotational speeds. We suspect that these irregularities could be attributed to various537

factors, including the presence of mechanical imperfections in the testbed, the performance of the538

DC motor over time (which could be affected by increasing operation temperature), the consistency539

of the motor driver’s performance (also influenced by temperature), the variability of the mechanical540

resistance of the materials used, the unwanted turbulent flows of the water (which could cause variations in541

consecutive thrust measurements), and the accuracy and consistency of the thrust and power consumption542

measurements obtained from the sensors. It is possible that more sensing elements may avoid some of543

these limitations and operate in a closed loop, including the use of additional sensors to measure propeller544

rotation speed instead of trusting on a timing parameter to guarantee that the rotation speed has been545

reached. Also, monitoring the water movement to start the subsequent measurement after the water is546

effectively stopped, instead of trusting on another timing parameter that allows waiting an interval time to547

restart measurements, presuming the water movement has stopped. Despite the limitations posed by the548

physical nature of the test bed, such as mechanical imperfections, temperature-dependent performance549

variations, sensor measurement uncertainties, and the possibility of the genetic algorithm getting trapped550

in local minima, our physical running genetic algorithm successfully converged to detect an optimal551

operating mode for the cyber-physical component under real-world considerations. Therefore, applying552

the proposed architecture to the search for optimal operating modes of a cyber-physical component in553

a physical-running set is possible. We have proposed and used a procedure for applying this strategy,554

finding real optimal thrust/power consumption regimes for a cyber-physical component. Moreover, the555

final version of the software to be integrated into the assessed cyber-physical component is expected556

to be more streamlined. This is because it will be necessary to exclude certain code segments, thereby557

reducing the investment in computation and energy, which were previously dedicated to capturing and558

processing status and effects data. While these elements were crucial during the investigation of the559

operational modes of the cyber-physical component, they will no longer be needed for its subsequent560

normal operation.561

The entire process can be extended to evaluate other functional components of the AUV, determine562

their optimal operating modes, and catalog them based on their capabilities and possibilities for integration563

through defined interfaces. This approach enables the advancement towards component-based AUV564

engineering, where each functional component is optimized individually and can be efficiently integrated565

into an AUV system. Furthermore, we have presented this experiment as a specific instance of a physical-566

running algorithm. We have also suggested a methodological approach to replicate this case by providing567

a method engineering perspective for guiding the adoption, an architecture to support the design process,568

and a cost model to assess its economic feasibility.569

However, there are problems associated in developing a design using a physical schema, such as570

determining the equilibrium points of relevant engineering variables, including cost, sustainability, and571

safety. From the engineering tradition, we assume that modeling and simulating are less expensive than572

designing by looking for the optimal modes in real sets. However, the reduced size of new vehicles has573

enabled this engineering alternative due to their autonomy, the low price of electromechanical components,574

and packetized artificial intelligence . Our results indicate the feasibility of this procedural approach.575

Under a theoretical perspective, other search-based algorithms can be used for the same objective.576

For example those mentioned by Corso et al. (2021) include simulated annealing, Bayesian optimization,577

and ant-colony optimization are open alternative to study. Method engineering approaches for adapting578

and adopting the proposed approached require empirical evidence to be improved and refined. The cost579

model, that was formulated for supporting the proposed approach, should be refined for generating hybrid580

and optimized approach where a simulation-based or a physical-based design can be adopted in the same581
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project for different components, while considering the cost of each option.582

CONCLUSIONS583

We recognize the importance of a component-based approach in addressing the complexities inherent in584

engineering cyber-physical systems, particularly those manifested as autonomous underwater vehicles. In585

tackling the challenge of identifying notable operation modes of cyber-physical components as a prelim-586

inary step to their integration, our approach acknowledges the traditional method based on simulation587

through computational models, while focusing on the alternative of directly evaluating components in the588

physical world.589

We proposed an architecture that employs a cyber-physical loop, utilizing search algorithms to directly590

evaluate components in their real-world environment, a method we have termed the ‘physical-running591

approach.’ Specifically, we analyzed the case of an AUV thruster component that integrates a flexible592

propeller, which is particularly suitable for exploration missions in unknown environments. This scenario593

presents significant challenges in developing a computational model that can accurately represent the594

dynamic behavior of such a component. A genetic algorithm was instantiated specifically for this case,595

and we modified it by incorporating the ability to operate without a traditional fitness function. Instead,596

we evaluated the performance of chromosomes, generation by generation, directly in the physical world.597

We developed a procedure to apply this architecture and verified its efficacy. This required setting up598

a small distributed system to maintain the execution of the genetic algorithm in a computational space599

on a dedicated computing unit. This unit communicates via a data link with a second computing unit (a600

microcontroller board) that serves as an interface with the physical world. Here, actions and their effects601

are tested, impacting both the cyber-physical component itself and its surrounding environment. As a602

complementary step, we conducted a comparative analysis to identify the specific conditions that lead603

to inflection points where the physical-running approach becomes more cost-effective compared to a604

traditional simulation-based approach. This allowed us to establish not only technical feasibility as an605

advantage but also economic feasibility as part of the comparison.606

The results demonstrate that, under the physical-running approach, genetic algorithms are effective607

in identifying optimal operation points for cyber-physical components within a real context, leading to608

optimal design alternatives. This approach offers several advantages, including eliminating the need for a609

computational model of the component (regardless of its existence), and a reduction in the time and effort610

required to achieve an accurate description of the cyber-physical component in real-world conditions.611

Additionally, the use of genetic algorithms enables the automated evaluation of an AUV thruster and612

the determination of its optimal operating points, facilitating simplified component specifications that613

theoretically enhance interoperability with other components and reduce the combinatorial complexity of614

an integrated system.615

While the physical-running approach yields more realistic results, it is not without limitations.616

Compared to a traditional simulation-based method, this approach demands more computing time and617

physical resources, such as laboratory space and specific testing conditions. Although these limitations618

are typical in naval engineering, they do not necessarily imply the higher costs and risks associated with619

computational models.620

Additionally, we have recognized that enabling the engineering alternative of using physical-running621

approaches at design time implies a set of open problems that require further study. For example, it is622

important to establish decision points between physical and traditional design approaches, namely, to623

determine when and under which conditions a physical-running approach is better than a computational624

model for designing and characterizing cyber-physical components.625

In the comparative analysis section, we presented a set of cost factors which, if understood as626

abstractions or simplifications, could prove useful in characterizing the performance of work teams and627

their respective infrastructures under different approaches. Consequently, further work is necessary to628

more precisely determine the behavior of these cost factors and their relationships within both physical-629

running and traditional approaches.630

Although, we are under the impression that the time and cost savings in component are comparable631

under the physical-running, in the integration phase, and due to (i) the simplification of interfaces, (ii)632

less error propagation, and (iii) the simplification of the general control complexity, the physical-running633

approach could represent a radical saving that warrants further study.634
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Finally, we believe that these approaches are not mutually exclusive; thus, additional studies are needed635

to establish the conditions and characteristics of an integration between both. This realization opens up636

new possibilities for future research and development, highlighting the importance of a comprehensive637

approach that leverages the strengths of both physical-running and traditional methodologies in cyber-638

physical systems engineering design.639
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autonomous underwater vehicles by adapting software product lines. In Conference on Integrated655

Computer Technologies in Mechanical Engineering–Synergetic Engineering (to be published). Springer.656

Cheng, R., Lu, X., and Yu, X. (2022). A mathematical model for the routing optimization problem with657

time window. In Journal of Physics: Conference Series, Vol. 2219, No. 1, page 012038. IOP Publishing.658

Choi, H., Crump, C., Duriez, C., Elmquist, A., Hager, G., Han, D., Hearl, F., Hodgins, J., Jain, A., Leve,659

F., Li, C., Meier, F., Negrut, D., Righetti, L., Rodriguez, A., Tan, J., and Trinkle, J. (2021). On the use660

of simulation in robotics: Opportunities, challenges, and suggestions for moving forward. Proceedings661

of the National Academy of Sciences, 118(1):e1907856118.662

Corso, A., Moss, R., Koren, M., Lee, R., and Kochenderfer, M. (2021). A survey of algorithms for663

black-box safety validation of cyber-physical systems. Journal of Artificial Intelligence Research,664

72:377–428.665

Crnkovic, I. (2001). Component-based software engineering—new challenges in software development.666

Software focus, 2(4):127–133.667

Deng, L., Peng, Q., Cai, L., Zeng, J., Bhatt, N. R., and Hui, F. (2023). Multiobjective collabora-668

tive optimization method for the urban rail multirouting train operation plan. Journal of Advanced669

Transportation, 2023.670

Diaz-Gomez, P. A. and Hougen, D. F. (2007). Initial population for genetic algorithms: A metric approach.671

In International Conference on Genetic and Evolutionary Methods, Las Vegas, Nevada, pages 43–49.672

CSREA Press.673

Duo, W., Zhou, M., and Abusorrah, A. (2022). A survey of cyber attacks on cyber physical systems:674

Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 9(5):784–800.675

Fabarisov, T., Yusupova, N., Ding, K., Morozov, A., and Janschek, K. (2020). Model-based stochastic676

error propagation analysis for cyber-physical systems. Acta Polytechnica Hungarica, 17(8):15–28.677

Fritzson, P. (2014). Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-678

physical approach. John Wiley & Sons.679

Gobillot, N., Lesire, C., and Doose, D. (2019). A design and analysis methodology for component-based680

real-time architectures of autonomous systems. Journal of Intelligent & Robotic Systems, 96:123–138.681

Gross, H.-G. (2005). Component-based software testing with UML. Springer Science & Business Media.682

Haupt, R. L. and Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.683

Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., and Achiche, S. (2016).684

Design, modelling, simulation and integration of cyber physical systems: Methods and applications.685

Computers in Industry, 82:273–289.686

Helbig, T., Hoos, J., and Westkämper, E. (2014). A method for estimating and evaluating life cycle costs687

of decentralized component-based automation solutions. Procedia CIRP, 17:332–337.688

19/20
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Kowalski, M., Izdebski, M., Żak, J., Gołda, P., and Manerowski, J. (2021). Planning and management of693

aircraft maintenance using a genetic algorithm. Eksploatacja i Niezawodność, 23(1):143–153.694
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