
Extending Shape Expressions for different types of
knowledge graphs
Jose Emilio Labra-Gayo1

1WESO lab - University of Oviedo

Abstract
Shape Expressions (ShEx) has been proposed as a concise and human-readable language to describe
and validate RDF. Inspired by regular expressions, it offers an expressive formalism to describe graph
structures based on regular bag expressions. Although plain RDF is one of the common data formats
employed to represent knowledge graphs, there have been several proposals to either extend RDF with
the so-called RDF-Star or RDF 1.2, or to employ other formalisms like property graphs. In this paper
we present an overview and comparison of those approaches and propose three possible extensions of
ShEx: ShEx-Star which can be used to validate RDF-Star, ShEx-N: that can be used when nodes also
act as properties in RDF and PShEx, which can be used to describe property graphs. We present some
examples and a semantics of each extension.

1. Introduction

Although Knowledge graphs have been successfully adopted by the industry, an important
aspect of their practical application is the quality of the data that they contain. In order to
increase their quality, it is necessary to have some mechanisms that can check the conformance
of the data to some kind of schema. Knowledge graphs are usually considered schema-less,
because there is no mandatory schema, however, in most cases the data curators have an implicit
schema in mind. Having the possibility to materialize that implicit schema into a machine
processable form that can be automatically verified can mitigate the risk of non-conformant
data.

In practice, there are several types of technologies that can be used for knowledge graphs [1]:
Directed edge-labeled graphs, whose main representative are RDF graphs, and Property graphs,
which allow property–value pairs and labels to be associated with nodes and edges.

In the case of RDF, two main technologies have been proposed for validation: ShEx [2] and
SHACL [3], which are based on the notion of a shape as a description of the topology of some
specific kind of nodes. In this way, it is possible to define a schema as a set of shapes which
describe the expected properties of some nodes, their expected cardinalities and the kind of
nodes. These schemas, can be used to validate RDF data and check if it conforms to those shapes.
We employ ShEx in the paper because it can be seen as a description language for RDF acting
as grammar where a ShEx schema represents the set of all the RDF graphs that conform to it.

Envelope-Open labra@uniovi.es (J. E. Labra-Gayo)
GLOBE http://labra.weso.es (J. E. Labra-Gayo)
Orcid 0000-0001-8907-5348 (J. E. Labra-Gayo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:labra@uniovi.es
http://labra.weso.es
https://orcid.org/0000-0001-8907-5348
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

There has been a proposal for an extension of RDF called RDF-Star [4] and a Working Group
is currently working taking that proposal as input to define what is currently called RDF
1.2 [5]. The proposal extends RDF with the possibility of having triples as subjects or objects
in statements. The relationship between that extension and property graphs has already been
studied [6].

Although ShEx was defined to describe and validate RDF, we consider that it can be extended
to describe and validate RDF-Star (or RDF 1.2), so in this paper we explore a possible extension
of the language in that direction. Apart from that, the shapes in ShEx are usually centered
on describing nodes that act as either subjects or objects, but in RDF, it is also possible to
add statements whose subjects or objects are also the predicates of other statements. We also
explore a possible extension of ShEx where it is possible to define shapes about nodes that act as
properties. Finally, although there have been several proposals to define schemas for property
graphs, we consider that the grammar-based approach of ShEx can also be helpful, so we also
explore what it would look like to extend ShEx for describing and validating property graphs.
The main contributions of this paper are to present three extensions of ShEx: ShEx-Star

for RDF-Star (section 3), ShEx-N for describing nodes as properties (section 4) and PShEx for
property graphs (section 5), with their abstract syntax and semantic definitions.

2. RDF and ShEx

Definition 1 (RDF triple and RDF Graph). Given a set of IRIs I , a set of blank nodes B and a set
of literals Lit , an RDF triple is a tuple (𝑠, 𝑝, 𝑜) where 𝑠 ∈ I ∪ B is called the subject, 𝑝 ∈ I is called
the predicate and 𝑜 ∈ I ∪ B ∪ Lit is called the object. An RDF graph G is a set of RDF triples.

There are several syntaxes for RDF graphs like Turtle, N3, RDF/XML, etc. In this document,
we will use Turtle.

Example 1 (Example of an RDF graph in Turtle). The following snippet contains a simple RDF
graph with two nodes :a and :b.

prefix : <http://example.org/>

:a :name "Alice" ;
:knows :b .

:b :firstname "Robert", "Julius" ;
:lastname "Smith" .

The neighbors of a node 𝑛 ∈ V in an RDF graph G are defined as 𝑛𝑒𝑖𝑔ℎ𝑠(𝑛,G) = {(𝑛, 𝑝, 𝑦) ∣
(𝑛, 𝑝, 𝑦) ∈ G} ∪ {(𝑥, 𝑝, 𝑛) ∣ (𝑥, 𝑝, 𝑛) ∈ G} ∪ {(𝑥, 𝑛, 𝑦) ∣ (𝑥, 𝑛, 𝑦) ∈ G}.

Shape Expressions (ShEx) were proposed as such a language in 2014 [2]. It was designed as a
high-level and concise domain-specific language to describe RDF. The syntax of ShEx is inspired
by Turtle and SPARQL, while the semantics was inspired by RelaxNG and XML Schema. In this
section we describe a simplified abstract syntax of ShEx following [7]1.

1The full specification of ShEx is available at https://shex.io/shex-semantics/

https://shex.io/shex-semantics/

"Alice"

:a :b

:name

“Robert" “Julius" “Smith"

:�rstname :lastname:�rstname

:knows

Figure 1: Basic RDF graph example

Definition 2 (ShEx schema). A ShEx Schema is defined as a tuple ⟨L, 𝛿⟩ where L is the set of
shape labels, and 𝛿 ∶ L → S is a total function from labels to shape expressions. The set of
shape expressions 𝑠𝑒 ∈ S is defined using the following abstract syntax:

𝑠𝑒 ::= cond Basic boolean condition on nodes (node constraint)
| 𝑠 Shape
| 𝑠𝑒1 AND 𝑠𝑒2 Conjunction of 𝑠𝑒1 and 𝑠𝑒2
| @l Shape label reference for l ∈ L

𝑠 ::= CLOSED {𝑡𝑒} Closed shape
| {𝑡𝑒} Open shape

𝑡𝑒 ::= 𝑡𝑒1; 𝑡𝑒2 Each of 𝑡𝑒1 and 𝑡𝑒2
| 𝑡𝑒1 ∣ 𝑡𝑒2 Either 𝑡𝑒1 or 𝑡𝑒2
| 𝑡𝑒∗ Zero or more 𝑡𝑒
|

𝑝
−→ 𝑠𝑒 Outgoing Triple with predicate 𝑝 and object conforming to 𝑠𝑒

| 𝑠𝑒
𝑝
−→ Incoming triple with predicate 𝑝 and subject conforming to 𝑠𝑒

| 𝜖 Empty triple expression

Intuitively, shape expressions define conditions about nodes while triple expressions define
conditions about the neighborhood of nodes, and shapes qualify those neighborhoods by
disallowing triples with other predicates in the case of closed shapes or allowing them in the
case of open shapes. We omit negation and disjunction operator to simplify the interactions
between negation and recursion, which led to a stratified negation requirement in ShEx.

The restrictions imposed on shape expressions schemas in [8] also apply here. Namely, in a
schema (L, 𝛿 , S)

• The shape label references used by the definition function 𝛿 are themselves defined, i.e. if
@l appears in some shape definition, then l belongs to L;

• No definition 𝛿(l) uses a reference@l to itself, neither directly nor transitively, except

while traversing a shape. For instance, 𝛿(l) = @l AND 𝑠𝑒 is forbidden, but 𝛿(l) = {
𝑝
−→ @l}

is allowed.

Example 2 (Example of ShEx schema). A ShEx schema that describes the RDF graph presented
in example 1 can be defined as:

L = {𝑃𝑒𝑟𝑠𝑜𝑛 }

𝛿(𝑃𝑒𝑟𝑠𝑜𝑛) = { (
𝑛𝑎𝑚𝑒
−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔 ∣

𝑓 𝑖𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔*;

𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔);

𝑘𝑛𝑜𝑤𝑠
−−−−−→ @𝑃𝑒𝑟𝑠𝑜𝑛

}

ShEx has several concrete syntaxes like a compact syntax (ShExC) and an RDF syntax defined
based on JSON-LD (ShExJ) 2.

Example 3 (Example of ShEx schema in ShExC). Example of a ShEx schema using ShEx
compact syntax.

prefix : <http://example.org/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
<Person> {
(:name xsd:string |
:firstname xsd:string * ; :lastname xsd:string);
:knows @<Person> *
}

The semantics of ShEx schemas is based on a conformance relation parameterized by a
shape assignment: we say that node 𝑛 in graph G conforms to shape expression 𝑠𝑒 with shape
assignment 𝜏, and we write G, 𝑛, 𝜏 ⊨ 𝑠𝑒.
The following rules are defined similar to [9], where it is shown that there exists a unique

maximal shape assignment 𝜏max that allows us to define conformance independently of the
shape assignment. The conformance relation is defined recursively on the structure of 𝑠𝑒 by the
set of inference rules presented in table 1 where 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒) is the set of predicates that appear in
a triple expression 𝑡𝑒 and can be defined as:

𝐶𝑜𝑛𝑑
𝑐𝑜𝑛𝑑(𝑛) = 𝑡𝑟𝑢𝑒

G, 𝑛, 𝜏 ⊨ 𝑐𝑜𝑛𝑑
𝐴𝑁𝐷

G, 𝑛, 𝜏 ⊨ 𝑠𝑒1 G, 𝑛, 𝜏 ⊨ 𝑠𝑒2
G, 𝑛, 𝜏 ⊨ 𝑠𝑒1 AND 𝑠𝑒2

𝐶𝑙𝑜𝑠𝑒𝑑𝑆ℎ𝑎𝑝𝑒
𝑛𝑒𝑖𝑔ℎ𝑠(𝑛,G) = 𝑡𝑠 G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒

G, 𝑛, 𝜏 ⊨ CLOSED {𝑡𝑒}

𝑂𝑝𝑒𝑛𝑆ℎ𝑎𝑝𝑒
𝑡𝑠 = {⟨𝑥, 𝑝, 𝑦⟩ ∈ 𝑛𝑒𝑖𝑔ℎ𝑠(𝑛,G) ∣ 𝑝 ∈ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒)} G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒

G, 𝑛, 𝜏 ⊨ {𝑡𝑒}
Table 1
Inference rules for ShEx shape expressions

𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1; 𝑡𝑒2) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1) ∪ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒2)
𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1 ∣ 𝑡𝑒2) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1) ∪ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒2)
𝑝𝑟𝑒𝑑𝑠(

𝑝
−→ 𝑡𝑒) = {𝑝}

𝑝𝑟𝑒𝑑𝑠(𝑡𝑒∗) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒)
𝑝𝑟𝑒𝑑𝑠(𝜖) = ∅

The rules for node constraints (𝐶𝑜𝑛𝑑) and conjunction are as expected. A node 𝑛 conforms
to an open shape with triple expression 𝑡𝑒 if its neighborhood restricted to the triples with
predicates from 𝑡𝑒 conform, meaning that triples whose predicates are not mentioned in 𝑡𝑒 are

2See ShEx specification [8] for details.

not constrained by the shape (rule 𝑂𝑝𝑒𝑛𝑆ℎ𝑎𝑝𝑒). Conformance to a closed shape requires to
consider the whole neighborhood of the node (rule 𝐶𝑙𝑜𝑠𝑒𝑑𝑆ℎ𝑎𝑝𝑒).
Conformance to a triple expression uses a second relation defined on sets on neighborhood

triples 𝑡𝑠 instead of nodes 𝑛. The set of neighborhood nodes 𝑡𝑠 of a graph G conforms to a triple
expression 𝑡𝑒 with shape assignment 𝜏, written as G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒, as defined by the inference rules
in table 2.

𝐸𝑎𝑐ℎ𝑂𝑓
(𝑡𝑠1, 𝑡𝑠2) ∈ 𝑝𝑎𝑟 𝑡(𝑡𝑠) G, 𝑡𝑠1, 𝜏 ⊩ 𝑡𝑒1 G, 𝑡𝑠2, 𝜏 ⊩ 𝑡𝑒2

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1; 𝑡𝑒2

𝑂𝑛𝑒𝑂𝑓1
G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1 ∣ 𝑡𝑒2
𝑂𝑛𝑒𝑂𝑓2

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒2
G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1 ∣ 𝑡𝑒2

𝑇𝐶1

𝑡𝑠 = {⟨𝑥, 𝑝, 𝑦⟩} G, 𝑦 , 𝜏 ⊨ @l

G, 𝑡𝑠, 𝜏 ⊩
𝑝
−→ @l

𝑇𝐶2

𝑡𝑠 = {⟨𝑦 , 𝑝, 𝑥⟩} G, 𝑦 , 𝜏 ⊨ @l

G, 𝑡𝑠, 𝜏 ⊩ @l
𝑝
−→

𝑆𝑡𝑎𝑟2
(𝑡𝑠1, 𝑡𝑠2) ∈ 𝑝𝑎𝑟 𝑡(𝑡𝑠) G, 𝑡𝑠1, 𝜏 ⊩ 𝑡𝑒 G, 𝑡𝑠2, 𝜏 ⊩ 𝑡𝑒∗

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒∗
𝑆𝑡𝑎𝑟1 G, ∅, 𝜏 ⊩ 𝑡𝑒∗

Table 2
Inference rules for ShEx triple expressions

A shape assignment 𝜏 for graph G and S is called valid if for every node 𝑛 in G and every
shape expression label l defined in S, if 𝑛@l ∈ 𝜏, then G, 𝑛, 𝜏 ⊨ @l.

According to Boneva et al [7], for every graph G, there exists a unique maximal valid shape
assignment 𝜏max such that if 𝜏 is a valid shape assignment for G and S, then 𝜏 ⊆ 𝜏max.

3. RDF-Star and ShEx-Star

RDF-Star has been proposed as an extension of RDF where the subjects and objects can be
triples. We present a formal definition of RDF-Star based on [10]:

Definition 3 (RDF-Star). An RDF-Star triple is a tuple 𝑡 defined recursively as follows: Any
RDF triple 𝑡 ∈ (I ∪ B) × I × (I ∪ B ∪ Lit) is an RDF-Star triple; and given RDF-Star triples 𝑡 and 𝑡′
and RDF terms 𝑠 ∈ (I ∪ B), 𝑝 ∈ I and 𝑜 ∈ (I ∪ B ∪ Lit), the tuples (≪ 𝑡 ≫, 𝑝, 𝑜), (𝑠, 𝑝,≪ 𝑡′ ≫) and
(≪ 𝑡 ≫, 𝑝,≪ 𝑡′ ≫) are RDF-Star triples. An RDF-Star graph is a set of RDF-Star triples.

Example 4 (Example of an RDF-Star graph in Turtle-Star notation). The following snippet
contains a simple RDF-Star graph with two nodes :a and :b.

prefix : <http://example.org/>

:a :name "Alice" .
<< :a :knows :b >> :certainty 0.5 .
:b :firstname "Robert", "Julius" ;

:lastname "Smith" .

"Alice"

:a :b

:name

:knows
"0.5"

:certainty

“Robert" “Julius" “Smith"

:firstname :lastname:firstname

Figure 2: Basic RDF-Star example

We can extend ShEx to support ShEx-Star by adding the following declaration to the definition
of triple expressions 𝑡𝑒:

𝑡𝑒 ::= . . . Same definitions as in 2

| ≪
𝑝
−→ 𝑠𝑒 ≫{|𝑡𝑒|} Outgoing Triple term constraint with predicate 𝑝

| ≪ 𝑠𝑒
𝑝
−→ ≫{|𝑡𝑒|} Incoming triple term constraint with predicate 𝑝

Example 5 (Example of a ShEx-Star schema). A ShEx-Star schema that describes the RDF
graph presented in example 4 can be defined as:

𝛿(𝑃𝑒𝑟𝑠𝑜𝑛) = { (
𝑛𝑎𝑚𝑒
−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔 ∣

𝑓 𝑖𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔*;

𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔);

≪
𝑘𝑛𝑜𝑤𝑠
−−−−−→ @𝑃𝑒𝑟𝑠𝑜𝑛 ≫{|

𝑐𝑒𝑟 𝑡𝑎𝑖𝑛𝑡𝑦
−−−−−−→ 𝐹𝑙𝑜𝑎𝑡|}*

}

The expression ≪
𝑝
−→ 𝑠𝑒 ≫{|𝑡𝑒|} describes a triple term whose predicate is 𝑝 and whose

object conforms to the shape expression 𝑠𝑒 and that can be the subject of triples conforming to
triple expression 𝑡𝑒. The formal semantics can be described as:

𝑇𝑇𝐶1

𝑡𝑠 = {⟨≪ 𝑡 ≫, 𝑝, 𝑦⟩} G, 𝑦 , 𝜏 ⊨ 𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑠(≪ 𝑡 ≫,G) = 𝑡𝑠′ G, 𝑡𝑠′, 𝜏 ⊩ 𝑡𝑒

G, 𝑡𝑠, 𝜏 ⊩≪
𝑝
−→ 𝑠𝑒 ≫ {|𝑡𝑒|}

𝑇𝑇𝐶2

𝑡𝑠 = {⟨𝑥, 𝑝,≪ 𝑡 ≫⟩} G, 𝑥, 𝜏 ⊨ 𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑠(≪ 𝑡 ≫,G) = 𝑡𝑠′ G, 𝑡𝑠′, 𝜏 ⊩ 𝑡𝑒

G, 𝑡𝑠, 𝜏 ⊩≪ 𝑠𝑒
𝑝
−→ ≫ {|𝑡𝑒|}

Table 3
Inference rules for ShEx-* new triple term expressions

4. ShEx-N: Describing nodes that act as properties

In the RDF data model, predicates can also act as subjects or objects or triples. This aspect is
not taken into account in traditional ShEx, where the shapes describe the topology of nodes
without considering their potential role as predicates.

Example 6 (Example of an RDF graph a node acting as a property). The following snippet
contains a simple RDF graph where :knows is both a node and a property.

prefix : <http://example.org/>
prefix skos: <http://www.w3.org/2004/02/skos/core#>

:a :name "Alice" ;
:knows :b .

:b :firstname "Robert", "Julius" ;
:lastname "Smith" .

:knows skos:related :Friendship .

"Alice"

:a :b

:name

skos:related

:knows

:Friendship

“Robert" “Julius" “Smith"

:firstname :lastname:firstname

Figure 3: RDF example with a property as a node

In order to capture these appearances in a single shape, it is possible to add a new kind of
triple expression:

𝑡𝑒 ::= . . . Same definitions as in 2
| 𝑠𝑒1 −→ 𝑠𝑒2 Triple constraint with focus node acting as predicate and subject

conforming to 𝑠𝑒1 and object conforming to 𝑠𝑒2
The semantics of triple term constraints can be defined as:

𝑁𝑃1
𝑡𝑠 = {⟨𝑠, 𝑥, 𝑜⟩} G, 𝑠, 𝜏 ⊨ 𝑠𝑒1 G, 𝑜, 𝜏 ⊨ 𝑠𝑒2

G, 𝑡𝑠, 𝜏 ⊩ 𝑠𝑒1 −→ 𝑠𝑒2
Table 4
Inference rules for ShEx-N

Example 7 (Example of a ShEx-N schema). The following ShEx-N schema defines the shape
𝐹 𝑟 𝑖𝑒𝑛𝑠ℎ𝑖𝑝𝑃𝑟𝑜𝑝𝑒𝑟 𝑡𝑦 which validates the node :knows in example 6:

𝛿(𝐹 𝑟 𝑖𝑒𝑛𝑑𝑆ℎ𝑖𝑝𝑃𝑟𝑜𝑝𝑒𝑟 𝑡𝑦) = {
𝑠𝑘𝑜𝑠∶𝑟𝑒𝑙𝑎𝑡𝑒𝑑
−−−−−−−−−→ [∶ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝] ;

@𝑃𝑒𝑟𝑠𝑜𝑛 −→ @𝑃𝑒𝑟𝑠𝑜𝑛
}

𝛿(𝑃𝑒𝑟𝑠𝑜𝑛) = {
∶𝑛𝑎𝑚𝑒
−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔

∣
∶𝑓 𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔* ;

∶𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒
−−−−−−−→ 𝑆𝑡𝑟 𝑖𝑛𝑔

}

5. Property graphs and PShEx

Property graphs have become popular thanks to several commercial graph databases like Neo4j 3,
JanusGraph 4 or Sparksee 5. A property graph has unique identifiers for each node/edge and
allows to add property-value annotations to each node/edge in the arc as well as type annotations.
The following definition of a property graph follows [11].

Definition 4 (Property graph). Given a set of types T , a set of properties P , and a set of values
V , a property graph G is a tuple ⟨N , E, 𝜌, 𝜆𝑛, 𝜆𝑒, 𝜎⟩ where N ∩ E = ∅, 𝜌 ∶ E ↦ N × N is a total
function, 𝜆𝑛 ∶ N ↦ 𝐹𝑖𝑛𝑆𝑒𝑡(T), 𝜆𝑒 ∶ E ↦ T , and 𝜎 ∶ N ∪ E × P ↦ 𝐹𝑖𝑛𝑆𝑒𝑡(V).

A property graph is formed by a set of node identifiers N and a set of edges E where 𝜌
associates a pair of nodes (𝑛1, 𝑛2) to every 𝑒 ∈ E where 𝑛1 is the subject and 𝑛2 is the object, 𝜆𝑛
associates a set of types for node identifiers (notice that property graphs allow nodes to have
more than one type), 𝜆𝑒 associates a types for each edge identifier, and 𝜎 associates a set of
values to pairs (𝑖, 𝑝) such that 𝑖 ∈ N ∪ E is a node or edge and 𝑝 ∈ P is a property.

Example 8. As an example, we will represent information that Alice knows Robert with a
certainty of 0.5

T = {Person, knows} P = {name, certainty} V = {”Alice”, ”Robert”, ”Julius”, ”Smith”, 0.5}
N = {𝑛1, 𝑛2} E = {𝑟1} 𝜌 = 𝑟1 ↦ (𝑛1, 𝑛2)
𝜆𝑛 = 𝑛1 ↦ {Person}, 𝑛2 ↦ {Person} 𝜆𝑒 = 𝑟1 ↦ knows

𝜎 = (𝑛1, 𝑛𝑎𝑚𝑒) ↦ {”Alice”} (𝑛2, 𝑓 𝑖𝑟 𝑠𝑡𝑛𝑎𝑚𝑒) ↦ {”Robert”, ”Julius”}
(𝑛2, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒) ↦ {”Smith”} (𝑟1, 𝑐𝑒𝑟 𝑡𝑎𝑖𝑛𝑡𝑦) ↦ {0.5}

Figure 4 presents a possible visualization of a property graph.
We define a ShEx extension called PShEx that can be used to describe and validate Property

graphs. In property graphs, nodes and edges can have associated labels as well as a set of
property/values. In this way, it is necessary to adapt the definition of ShEx to describe pairs
or property/values. PShEx is composed of three main categories: shape expressions (𝑠𝑒) that
describe the shape of nodes, triple expressions (𝑡𝑒) that describe the shape of edge relationships
and property-value expressions (𝑝𝑣𝑠) that describe sets of property/values associated with
node/edge identifiers.

3https://neo4j.com/
4https://janusgraph.org/
5https://www.sparsity-technologies.com/#sparksee

https://neo4j.com/
https://janusgraph.org/
https://www.sparsity-technologies.com/#sparksee

n1

Human

name: Alice n2

Human

firstname: Robert, Julius

lastname: Smith
r1

knows

certainty: 0.5

Figure 4: Example graph visualization of a property graph

Definition 5 (PShEx schema). A PShEx Schema is a tuple ⟨L, 𝛿⟩ where L set of shape labels, and
𝛿 ∶ L → S is a total function from labels to shape expressions 𝑠𝑒 ∈ S defined using the abstract
syntax:

𝑠𝑒 ::= 𝑐𝑜𝑛𝑑𝑡𝑠 Basic boolean condition on set of types 𝑡𝑠 ⊆ T
| 𝑠 Shape
| 𝑠𝑒1 AND 𝑠𝑒2 Conjunction
| @l Shape label reference for l ∈ L
| 𝑝𝑣𝑠 Property-value specifiers of a node

𝑠 ::= CLOSED {𝑡𝑒} Closed shape
| {𝑡𝑒} Open shape

𝑡𝑒 ::= 𝑡𝑒1; 𝑡𝑒2 Each of 𝑡𝑒1 and 𝑡𝑒2
| 𝑡𝑒1 ∣ 𝑡𝑒2 Some of 𝑡𝑒1 or 𝑡𝑒2
| 𝑡𝑒∗ Zero or more 𝑡𝑒
|

𝑝
−→ @l 𝑝𝑣𝑠 Triple constraint with property type 𝑝

whose nodes satisfy the shape l and property-values 𝑝𝑣𝑠
𝑝𝑣𝑠 ::= ⌊𝑝𝑠⌋ Open property-value specifiers 𝑝𝑠

| ⌈𝑝𝑠⌉ Closed property-value specifiers 𝑝𝑠
𝑝𝑠 ::= 𝑝𝑠1 , 𝑝𝑠2 Each of 𝑝𝑠1 and 𝑝𝑠2

| 𝑝𝑠1 ∣ 𝑝𝑠2 OneOf of 𝑝𝑠1 or 𝑝𝑠2
| 𝑝𝑠∗ zero of more 𝑝𝑠
| 𝑝 ∶ 𝑐𝑜𝑛𝑑𝑣 Property 𝑝 with value conforming to 𝑐𝑜𝑛𝑑𝑣

𝑐𝑜𝑛𝑑𝑣𝑠 is a boolean condition on sets of values 𝑣𝑠 ⊆ V

Example 9. As an example, we can define a PShEx schema that describes the property graph
from example 8 where ℎ𝑎𝑠𝑇 𝑦𝑝𝑒𝑡 is a condition that is satisfied when the set of types of a node
contains the type 𝑡, i.e. ℎ𝑎𝑠𝑇 𝑦𝑝𝑒𝑡(𝑣𝑠) = true if 𝑡 ∈ 𝑣𝑠 and 𝑆𝑡𝑟 𝑖𝑛𝑔, 𝐹 𝑙𝑜𝑎𝑡 are conditions on the
values that are satisfied when the values have the corresponding type.

L = { 𝑃𝑒𝑟𝑠𝑜𝑛}
𝛿(𝑃𝑒𝑟𝑠𝑜𝑛) = ℎ𝑎𝑠𝑇 𝑦𝑝𝑒𝐻𝑢𝑚𝑎𝑛 AND

⌊𝑛𝑎𝑚𝑒 ∶ 𝑆𝑡𝑟 𝑖𝑛𝑔 ∣ 𝑓 𝑖𝑟 𝑠𝑡𝑛𝑎𝑚𝑒 ∶ 𝑆𝑡𝑟 𝑖𝑛𝑔∗ , 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒 ∶ 𝑆𝑡𝑟 𝑖𝑛𝑔⌋ AND

{
𝑘𝑛𝑜𝑤𝑠
−−−−−→ @𝑃𝑒𝑟𝑠𝑜𝑛 ⌊𝑐𝑒𝑟 𝑡𝑎𝑖𝑛𝑡𝑦 ∶ 𝐹 𝑙𝑜𝑎𝑡⌋* }

In order to define the semantic specification of PShEx we will need to define the neighborhood
of a node in a property graph.

Definition 6 (Neighborhood of node in property graph). The neighbors of a node 𝑛 ∈ N
in a property graph G = ⟨N , E, 𝜌, 𝜆𝑛, 𝜆𝑒, 𝜎⟩ are defined as 𝑛𝑒𝑖𝑔ℎ𝑠(𝑛) = {(𝑛, 𝑝, 𝑦 , 𝑣𝑠) ∣ ∃𝑣 ∈
E such that 𝜌(𝑣) = (𝑛, 𝑦) ∧ 𝜆𝑒(𝑣) = 𝑝 ∧ 𝑣𝑠 = {(𝑘, 𝑣) ∣ 𝜎(𝑘, 𝑣) = 𝑤𝑠 ∧ 𝑣 ∈ 𝑤𝑠}}

The semantic specification of PShEx can be defined in a similar way to the ShEx one. Given
a property graph G, and a shape assignment 𝜏, a node identifier 𝑛 ∈ N conforms with a shape
expression 𝑠𝑒, which is represented as G, 𝑛, 𝜏 ⊨ 𝑠𝑒 and follows the rules presented in 5 where
𝑝𝑟𝑒𝑑𝑠(𝑡𝑒) is the set of edge labels (or predicates) that appear in a triple expression 𝑡𝑒 and can be
defined as:

𝐶𝑜𝑛𝑑𝑡𝑠
𝜆𝑛(𝑛) = 𝑣𝑠 𝑐𝑜𝑛𝑑𝑡𝑠(𝑣𝑠) = 𝑡𝑟𝑢𝑒

G, 𝑛, 𝜏 ⊨ 𝑐𝑜𝑛𝑑𝑡𝑠
𝐴𝑁𝐷

G, 𝑛, 𝜏 ⊨ 𝑠𝑒1 G, 𝑛, 𝜏 ⊨ 𝑠𝑒2
G, 𝑛, 𝜏 ⊨ 𝑠𝑒1 AND 𝑠𝑒2

𝐶𝑙𝑜𝑠𝑒𝑑𝑆ℎ𝑎𝑝𝑒
𝑛𝑒𝑖𝑔ℎ𝑠(𝑛,G) = 𝑡𝑠 G, 𝑡𝑠, 𝜏 ⊩ 𝑠′

G, 𝑛, 𝜏 ⊨ CLOSED {𝑡𝑒}

𝑂𝑝𝑒𝑛𝑆ℎ𝑎𝑝𝑒
𝑡𝑠 = {⟨𝑥, 𝑝, 𝑦⟩ ∈ 𝑛𝑒𝑖𝑔ℎ𝑠(𝑛,G) ∣ 𝑝 ∈ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒)} G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒

G, 𝑛, 𝜏 ⊨ {𝑡𝑒}
Table 5
Rules for PShEx shape expressions

𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1; 𝑡𝑒2) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1) ∪ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒2)
𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1 ∣ 𝑡𝑒2) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒1) ∪ 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒2)
𝑝𝑟𝑒𝑑𝑠(

𝑝
−→ 𝑡𝑒) = {𝑝}

𝑝𝑟𝑒𝑑𝑠(𝑡𝑒∗) = 𝑝𝑟𝑒𝑑𝑠(𝑡𝑒)
𝑝𝑟𝑒𝑑𝑠(𝜖) = ∅

As in the case of ShEx, the previous definition uses a second conformance relation defined
on sets of triples 𝑡𝑠 instead of nodes 𝑛. The set of neighborhood nodes 𝑡𝑠 from a property graph
G conforms to a triple expression 𝑡𝑒 with shape assignment 𝜏, written G, 𝑡𝑠, 𝜏 ⊩ 𝑠, as defined by
the inference rules represented in table 6.

𝐸𝑎𝑐ℎ𝑂𝑓
(𝑡𝑠1, 𝑡𝑠2) ∈ 𝑝𝑎𝑟 𝑡(𝑡𝑠) G, 𝑡𝑠1, 𝜏 ⊩ 𝑡𝑒1 G, 𝑡𝑠2, 𝜏 ⊩ 𝑡𝑒2

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1; 𝑡𝑒2

𝑂𝑛𝑒𝑂𝑓1
G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1 ∣ 𝑡𝑒2
𝑂𝑛𝑒𝑂𝑓2

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒2
G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒1 ∣ 𝑡𝑒2

𝑇 𝑟 𝑖𝑝𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑡𝑠 = {⟨𝑥, 𝑝, 𝑦 , 𝑠⟩} G, 𝑦 , 𝜏 ⊨ @l G, 𝑠, 𝜏 ⊢ 𝑞𝑠

G, 𝑡𝑠, 𝜏 ⊩
𝑝
−→ @l 𝑞𝑠

𝑆𝑡𝑎𝑟1 G, ∅, 𝜏 ⊩ 𝑡𝑒∗

𝑆𝑡𝑎𝑟2
(𝑡𝑠1, 𝑡𝑠2) ∈ 𝑝𝑎𝑟 𝑡(𝑡𝑠) G, 𝑡𝑠1, 𝜏 ⊩ 𝑡𝑒 G, 𝑡𝑠2, 𝜏 ⊩ 𝑡𝑒∗

G, 𝑡𝑠, 𝜏 ⊩ 𝑡𝑒∗

Table 6
Rules for PShEx triple expressions

In the case of PShEx we declare a new conformance relationship G, 𝑠, 𝜏 ⊢ 𝑞𝑠 between a graph

G a set 𝑠 ∈ 𝑃 ×𝑉 of property-value elements, a shape assignment 𝜏 and a property-value specifier
𝑝𝑣𝑠 whose rules are defined in table 7 where 𝑝𝑟𝑜𝑝𝑠(𝑝𝑣𝑠) is the set of properties that appear in a
property-value specifier 𝑝𝑠 and can be defined as:

𝑂𝑝𝑒𝑛𝑃𝑉 𝑠
𝑠′ = {(𝑝, 𝑣) ∈ 𝑠|𝑝 ∈ 𝑝𝑟𝑜𝑝𝑠(𝑝𝑠)} G, 𝑠′, 𝜏 ⊢ 𝑝𝑠

G, 𝑠, 𝜏 ⊢ ⌊𝑝𝑠⌋
𝐶𝑙𝑜𝑠𝑒𝑃𝑉 𝑠

G, 𝑠, 𝜏 ⊢ 𝑝𝑠

G, 𝑠, 𝜏 ⊢ ⌈𝑝𝑠⌉

𝐸𝑎𝑐ℎ𝑂𝑓 𝑃𝑠
G, 𝑠, 𝜏 ⊢ 𝑝𝑠1 G, 𝑠, 𝜏 ⊢ 𝑝𝑠2

G, 𝑠, 𝜏 ⊢ 𝑝𝑠1 , 𝑝𝑠2

𝑂𝑛𝑒𝑂𝑓 𝑃𝑠1
G, 𝑠, 𝜏 ⊢ 𝑝𝑠1

G, 𝑠, 𝜏 ⊢ 𝑝𝑠1 ∣ 𝑝𝑠2
𝑂𝑛𝑒𝑂𝑓 𝑃𝑠2

G, 𝑠, 𝜏 ⊢ 𝑝𝑠2
G, 𝑠, 𝜏 ⊢ 𝑝𝑠1 ∣ 𝑝𝑠2

𝑆𝑡𝑎𝑟𝑃𝑠1 G, ∅, 𝜏 ⊢ 𝑝𝑠∗
𝑆𝑡𝑎𝑟𝑃𝑠2

(𝑠1, 𝑠2) ∈ 𝑝𝑎𝑟 𝑡(𝑠) G, 𝑠1, 𝜏 ⊢ 𝑝𝑠 G, 𝑠2, 𝜏 ⊢ 𝑝𝑠∗

G, 𝑠, 𝜏 ⊢ 𝑝𝑠∗

𝑃𝑟𝑜𝑝𝑒𝑟 𝑡𝑦𝑉 𝑎𝑙𝑢𝑒
𝑠 = {(𝑝, 𝑤)} 𝑐𝑜𝑛𝑣𝑣(𝑤) = true

G, 𝑠, 𝜏 ⊢ 𝑝 ∶ 𝑐𝑜𝑛𝑑𝑣
Table 7
Rules for PShEx property-value specifiers

𝑝𝑟𝑜𝑝𝑠(𝑝𝑠1 , 𝑝𝑠2) = 𝑝𝑟𝑜𝑝𝑠(𝑝𝑠1) ∪ 𝑝𝑟𝑜𝑝𝑠(𝑝𝑠2)
𝑝𝑟𝑜𝑝𝑠(𝑝𝑠1 ∣ 𝑝𝑠2) = 𝑝𝑟𝑜𝑝𝑠(𝑝𝑠1) ∪ 𝑝𝑟𝑜𝑝𝑠(𝑝𝑠2)
𝑝𝑟𝑜𝑝𝑠(𝑝𝑠∗) = 𝑝𝑟𝑒𝑑𝑠(𝑝𝑠)
𝑝𝑟𝑜𝑝𝑠(𝑝 ∶ 𝑐𝑜𝑛𝑑𝑣) = {𝑝}

As in the case of ShEx, the semantics of ShEx schemas can be defined independently on shape
assignments. A shape assignment 𝜏 for graph G and S is called valid if for every node 𝑛 in G
and every shape expression label l defined in S, if 𝑛@l ∈ 𝜏, then G, 𝑛, 𝜏 ⊨ @l.

6. Related work

ShEx was initially proposed in 2014 [2] as a concise and human readable language to describe
and validate RDF. It was based on a variant of regular expressions called Regular Bag Expres-
sions [12] which also supports recursive shapes. Combining negation with recursive shapes
was later studied in [9] where a well founded formal semantics for ShEx for proposed based
on stratification. Our definition of ShEx is based on that work, although we omitted negation,
disjunction and EXTRA declarations of shape expressions in this paper. After ShEx was pro-
posed, a W3C Data Shapes working group was chatered whose result was SHACL, proposed
as a recommendation in 2017 [3]. The specification of SHACL didn’t have an abstract syntax
and left the semantics of recursive shapes as an implementation dependent feature enabling the
appearance of several proposals that define an abstract syntax and add semantics for SHACL
with negation and recursion [13, 14, 15, 16]. A comparison between both ShEx and SHACL was
provided in [17] while in [18], a simple language was defined that can be used as a common
subset of both. We consider that some of our extensions to ShEx could also be applied to SHACL.

The approach followed in this paper to extend ShEx was started in this paper [19] where we
had already proposed an initial version of PShEx and WShEx [20], another extension of ShEx to
support the Wikibase data model. WShEx is conceptually similar to PShEx although a distinct
feature of the Wikidbase data model is that the values of properties can also be nodes in the
graph, which can be considered as a generalized property graphs model. This model was called
MARS (Multi-Attributed Relational Structures) in [21].

There are several proposals for property graphs schemas. GQL is an upcoming ISO standard
(ISO39075) 6 which is currently being developed and addresses the property graph model. In
order to provide support for GQL, PG-Schema [22] was proposed as a simple schema language
for property graphs. PG-Schema does not support cardinality constraints on edges, which
could be simulated using PG-Keys [23]. In [24], the authors propose a common framework for
property graph schema languages based on first order logic rules which supports cardinality
constraints. The closest proposal to PShEx would be the Property Graph Shapes Language
(ProGS) [11] although that language is based on SHACL and some of the differences SHACL
vs ShEx could also be applied to ProGS vs PShEx. For example, PShEx doesn’t have property
path expressions and ProGS doesn’t have regular bag expressions. Another difference is that
ProGS includes negation and recursion while in the version of PShEx included in this paper we
omitted negation. Comparison between RDF-Star and property graphs at the data model have
already been studied. In [25] proposes a common model for RDF, RDF-Star and property graphs
that they call statement graph, which is inspired by the OneGraph [26] vision. The conversion
between property graphs and RDF/RDF-Star is also studied in [6].

7. Conclusions and future work

We have presented three extensions to ShEx for different types of knowledge graphs: ShEx-*
adds support for RDF-Star, ShEx-N adds a constraint to describe nodes that act as properties,
and PShEx can be used to describe and validate property graphs. We presented an abstract
syntax and formal semantics for each of the variants.

There are several lines of future work. On the theoretical level, it will be necessary to research
the computational complexity implications of these features as well as the combination of these
features with other features from ShEx like negation, disjunction, EXTRA declarations, and even
the potential integration of all the features together in a single language. On the implementation
level: it will be necessary to propose a concrete compact syntax for each variant that can be
useful by data model engineers as well as devise algorithms that can be used to check the
conformance of graphs to the corresponding schemas. Although we used ShEx in this paper,
another line of future work would be to check which of the features proposed in this paper
could also be applied to SHACL.

Acknowledgments

This work has been partially funded by the Project ANGLIRU: ANGLIRU: Applying kNowledge
Graphs to research data interoperabiLIty and ReUsability, code: PID2020-117912RB. The discus-

6https://www.iso.org/standard/76120.html

https://www.iso.org/standard/76120.html

sions held during our participation in Dagstuhl seminar 24102 Shapes in graph data: theory
and implementation helped us to write some of the ideas included in this paper.

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, S. Kirrane,
J. E. Labra Gayo, R. Navigli, S. Neumaier, A.-C. Ngonga Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs,
number 22 in Synthesis Lectures on Data, Semantics, and Knowledge, Springer, 2021. URL:
https://kgbook.org/. doi:10.2200/S01125ED1V01Y202109DSK022.

[2] E. Prud’hommeaux, J. E. Labra Gayo, H. Solbrig, Shape Expressions: An RDF Validation
and Transformation Language, in: H. Sack, A. Filipowska, J. Lehmann, S. Hellmann (Eds.),
Proceedings of the 10th International Conference on Semantic Systems, SEMANTICS
2014, Leipzig, Germany, September 4-5, 2014, ACM Press, 2014, pp. 32–40. doi:10.1145/
2660517.2660523.

[3] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), W3C Recommen-
dation 20 July 2017, W3C Recommendation, World Wide Web Consortium, 2017. URL:
https://www.w3.org/TR/2017/REC-shacl-20170720/.

[4] R. Cyganiak, D. Wood, M. Lanthaler, RDF-star and SPARQL-star, Draft Community Group
Report, World Wide Web Consortium, 2021. URL: https://w3c.github.io/rdf-star/cg-spec.

[5] O. hartig, P.-A. Champin, G. Kellogg, A. Seaborne, RDF 1.2 Concepts and Abstract Syntax,
W3C Working Draft, World Wide Web Consortium, 2024. URL: https://www.w3.org/TR/
rdf12-concepts/.

[6] S. Khayatbashi, S. Ferrada, O. Hartig, Converting property graphs to rdf: a preliminary
study of the practical impact of different mappings, in: Proceedings of the 5th ACM
SIGMOD Joint International Workshop on Graph Data Management Experiences and
Systems (GRADES) and Network Data Analytics (NDA), SIGMOD/PODS ’22, ACM, 2022.
doi:10.1145/3534540.3534695.

[7] I. Boneva, J. E. Labra Gayo, E. G. Prud’hommeaux, Semantics and Validation of Shapes
Schemas for RDF, in: C. d’Amato, M. Fernández, V. A. M. Tamma, F. Lécué, P. Cudré-
Mauroux, J. F. Sequeda, C. Lange, J. Heflin (Eds.), The Semantic Web - ISWC 2017 - 16th
International SemanticWeb Conference, Vienna, Austria, October 21-25, 2017, Proceedings,
Part I, volume 10587 of Lecture Notes in Computer Science, Springer, 2017, pp. 104–120.

[8] E. Prud’hommeaux, I. Boneva, J. E. Labra Gayo, G. Kellog, Shape Expressions Language
2.0, 2017. URL: https://shexspec.github.io/spec/.

[9] I. Boneva, J. E. Labra Gayo, E. Prud’hommeaux, Semantics and validation of shapes schemas
for rdf, in: International Semantic Web Conference, 2017.

[10] O. Hartig, Foundations of RDF* and SPARQL* – An Alternative Approach to Statement-
Level Metadata in RDF, in: J. L. Reutter, D. Srivastava (Eds.), Proceedings of the 11th
Alberto Mendelzon International Workshop on Foundations of Data Management and the
Web, Montevideo, Uruguay, June 7-9, 2017, volume 1912 of CEUR Workshop Proceedings,
Sun SITE Central Europe (CEUR), 2017. URL: http://ceur-ws.org/Vol-1912/paper12.pdf.

[11] P. Seifer, R. Lämmel, S. Staab, ProGS: Property Graph Shapes Language, in: International

https://kgbook.org/
http://dx.doi.org/10.2200/S01125ED1V01Y202109DSK022
http://dx.doi.org/10.1145/2660517.2660523
http://dx.doi.org/10.1145/2660517.2660523
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://w3c.github.io/rdf-star/cg-spec
https://www.w3.org/TR/rdf12-concepts/
https://www.w3.org/TR/rdf12-concepts/
http://dx.doi.org/10.1145/3534540.3534695
https://shexspec.github.io/spec/
http://ceur-ws.org/Vol-1912/paper12.pdf

Semantic Web Conference, volume 12922, Springer, 2021, pp. 392–401. doi:https://doi.
org/10.1007/978-3-030-88361-4_23. arXiv:2107.05566.

[12] S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, H. R. Solbrig,
Complexity and Expressiveness of ShEx for RDF, in: 18th International Conference on
Database Theory, ICDT 2015, volume 31 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015, pp. 195–211.

[13] J. Corman, J. L. Reutter, O. Savković, Semantics and Validation of Recursive SHACL,
in: D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou,
L. Kaffee, E. Simperl (Eds.), The Semantic Web - ISWC 2018 - 17th International Semantic
Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I, volume
11136 of Lecture Notes in Computer Science, Springer, 2018, pp. 318–336.

[14] M. Andresel, J. Corman, M. Ortiz, J. L. Reutter, O. Savkovic, M. Simkus, Stable model
semantics for recursive shacl, in: Proceedings of The Web Conference 2020, WWW ’20,
ACM, 2020. doi:10.1145/3366423.3380229.

[15] B. Bogaerts, M. Jakubowski, Fixpoint semantics for recursive SHACL, in: A. Formisano, Y. A.
Liu, B. Bogaerts, A. Brik, V. Dahl, C. Dodaro, P. Fodor, G. L. Pozzato, J. Vennekens, N. Zhou
(Eds.), Proceedings 37th International Conference on Logic Programming (Technical Com-
munications), ICLP Technical Communications 2021, Porto (virtual event), 20-27th Septem-
ber 2021, volume 345 of EPTCS, 2021, pp. 41–47. URL: https://doi.org/10.4204/EPTCS.345.14.
doi:10.4204/EPTCS.345.14.

[16] A. Chmurovic, M. Šimkus, Well-founded semantics for recursive shacl, in: CEURWorkshop
Proceedings :, number 3203 in CEUR Workshop proceedings, 2022, pp. 2–13. URL: http:
//ceur-ws.org/Vol-3203/.

[17] J. E. Labra Gayo, E. Prud’hommeaux, I. Boneva, D. Kontokostas, Validating RDF Data,
volume 7 of Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan &
Claypool, 2017. URL: https://doi.org/10.2200/s00786ed1v01y201707wbe016. doi:10.2200/
s00786ed1v01y201707wbe016.

[18] J. E. Labra Gayo, H. García-González, D. Fernández-Alvarez, E. Prud’hommeaux, Challenges
in RDF Validation, in: G. Alor-Hernández, J. L. Sánchez-Cervantes, A. Rodríguez-González,
R. Valencia-García (Eds.), Current Trends in Semantic Web Technologies: Theory and
Practice, Studies in Computational Intelligence, Springer, 2019, pp. 121–151. doi:10.1007/
978-3-030-06149-4_6.

[19] J. E. L. Gayo, Creating knowledge graphs subsets using shape expressions, 2021.
arXiv:2110.11709.

[20] J.-E. Labra-Gayo, Wshex: A language to describe and validate wikibase entities, in:
L. Kaffee, S. Razniewski, G. Amaral, K. S. Alghamdi (Eds.), Proceedings of the 3rd Wiki-
data Workshop 2022 co-located with the 21st International Semantic Web Conference
(ISWC2022), Virtual Event, Hanghzou, China, October 2022, volume 3262 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3262/paper3.pdf.

[21] M. Marx, M. Krötzsch, V. Thost, Logic on MARS: ontologies for generalised property
graphs, in: C. Sierra (Ed.), Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI’17), International Joint Conferences on Artificial Intelligence,
2017, pp. 1188–1194. doi:10.24963/ijcai.2017/165.

[22] R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, A. Green, J. Hidders, B. Li, L. Libkin,

http://dx.doi.org/https://doi.org/10.1007/978-3-030-88361-4_23
http://dx.doi.org/https://doi.org/10.1007/978-3-030-88361-4_23
http://arxiv.org/abs/2107.05566
http://dx.doi.org/10.1145/3366423.3380229
https://doi.org/10.4204/EPTCS.345.14
http://dx.doi.org/10.4204/EPTCS.345.14
http://ceur-ws.org/Vol-3203/
http://ceur-ws.org/Vol-3203/
https://doi.org/10.2200/s00786ed1v01y201707wbe016
http://dx.doi.org/10.2200/s00786ed1v01y201707wbe016
http://dx.doi.org/10.2200/s00786ed1v01y201707wbe016
http://dx.doi.org/10.1007/978-3-030-06149-4_6
http://dx.doi.org/10.1007/978-3-030-06149-4_6
http://arxiv.org/abs/2110.11709
https://ceur-ws.org/Vol-3262/paper3.pdf
http://dx.doi.org/10.24963/ijcai.2017/165

V. Marsault, W. Martens, F. Murlak, S. Plantikow, O. Savkovic, M. Schmidt, J. Sequeda,
S. Staworko, D. Tomaszuk, H. Voigt, D. Vrgoc, M. Wu, D. Zivkovic, Pg-schema: Schemas
for property graphs, Proceedings of the ACM on Management of Data 1 (2023) 1–25.
doi:10.1145/3589778.

[23] R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, K. W. Hare, J. Hidders, V. E. Lee, B. Li,
L. Libkin, W. Martens, F. Murlak, J. Perryman, O. Savković, M. Schmidt, J. Sequeda,
S. Staworko, D. Tomaszuk, Pg-keys: Keys for property graphs, in: Proceedings of
the 2021 International Conference on Management of Data, SIGMOD/PODS ’21, ACM,
2021. doi:10.1145/3448016.3457561.

[24] N. Beeren, G. Fletcher, A formal design framework for practical property graph
schema languages, in: J. Stoyanovich, J. Teubner, N. Mamoulis, E. Pitoura, J. Mühlig,
K. Hose, S. S. Bhowmick, M. Lissandrini (Eds.), Proceedings 26th International Confer-
ence on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31,
2023, OpenProceedings.org, 2023, pp. 478–484. URL: https://doi.org/10.48786/edbt.2023.40.
doi:10.48786/EDBT.2023.40.

[25] E. Gelling, G. Fletcher, M. Schmidt, Bridging graph data models: Rdf, rdf-star, and property
graphs as directed acyclic graphs, CoRR abs/2304.13097 (2023). URL: https://doi.org/10.
48550/arXiv.2304.13097. doi:10.48550/ARXIV.2304.13097. arXiv:2304.13097.

[26] O. Lassila, M. Schmidt, O. Hartig, B. Bebee, D. Bechberger, W. Broekema, A. Khandelwal,
K. Lawrence, C. M. Lopez Enriquez, R. Sharda, B. Thompson, The onegraph vision:
Challenges of breaking the graph model lock-in1, Semantic Web 14 (2022) 125–134.
doi:10.3233/sw-223273.

http://dx.doi.org/10.1145/3589778
http://dx.doi.org/10.1145/3448016.3457561
https://doi.org/10.48786/edbt.2023.40
http://dx.doi.org/10.48786/EDBT.2023.40
https://doi.org/10.48550/arXiv.2304.13097
https://doi.org/10.48550/arXiv.2304.13097
http://dx.doi.org/10.48550/ARXIV.2304.13097
http://arxiv.org/abs/2304.13097
http://dx.doi.org/10.3233/sw-223273

	1 Introduction
	2 RDF and ShEx
	3 RDF-Star and ShEx-Star
	4 ShEx-N: Describing nodes that act as properties
	5 Property graphs and PShEx
	6 Related work
	7 Conclusions and future work

