
An approach to increase the usability of

Shape Expressions editors

Pablo Menendeza*, and Jose Emilio Labra-Gayo
a

a
 Dept. of Computer Science, University of Oviedo, Spain

Emails:pmenendz@gmail.com , labra@uniovi.es

Abstract. There is a need to increase the number of tools that support the use of

Shape Expressions language (ShEx). In this paper we present YASHE, a ShEx text
editor that incorporate new features with respect to the existing ones. It takes the

SPARQL text editor YASQE as a starting point and adapts and extends it to the

needs of the language. We also present ShExAuthor, a graphical assistant for ShEx
schema creation inspired by the WDQS of Wikidata. We have carried out a usability

experiment with 16 non-expert users to compare four ShEx editing tools. The results

showed no statistically significant differences in terms of time and completeness
percentage (CP) between the tested tools. However, our tools obtained better results

in CP and YASHE obtained the highest score in terms of precision (time to CP ratio).

Keywords. Shape Expressions, Text Editor, Graphical Editor, Usability

1. Introduction

For a language, to have a good adoption within the community, it is necessary that there

are tools that favor its use. Unfortunately, in the case of ShEx[3] (Shape Expressions),

there are not many tools. A basic tool for any language is to have a text editor adapted to

the syntax and nature of the language. One of the editors that introduced new features in

the SPARQL[16] clients ecosystem was the one incorporated by YASGUI[2]. Later

extracted as an independent module and known as YASQE[10]. Today it is used by

multiple triple stores, publishers, and other applications[14].

In this paper we present a text editor for ShEx known as YASHE. It takes YASQE as a

starting point and adapts and extends it to the needs of the language. Apart from

incorporating features common to any text editor such as: line numbering, colored syntax,

and syntactic error detection, it adds others related to the language domain itself. Some

of them are the suggestion of prefixes commonly used in the Semantic Web and the

possibility of autocompleting Wikidata identifiers through their name.

On the other hand, the major knowledge sources of the Semantic Web, such as

Wikidata[13] or DBPedia[12], require human interaction to obtain a large part of the data

they offer. These data belong to very different fields of knowledge. Therefore, the

participation of domain experts is necessary. Wikidata makes use of languages such as

SPARQL for data querying and has recently incorporated ShEx schemas (known as

* Corresponding author: Pablo Menendez, pmenendz@gmail.com

EntitySchemas1). One of the problems faced by domain experts when working with these

technologies is the fact that they don´t need to be accustomed to the use of computer

languages. On the contrary, they may find a graphical interface more comfortable.

Wikidata offers, in its SPARQL playground known as Wikidata Query Service (WDQS)2,

a query graphical assistant.

In this paper, we present a tool for ShEx development, known as ShExAuthor, which

offers a shapes graphical assistant inspired by that of WDQS. This tool integrates

YASHE into its system to visualize the shapes created from the wizard. Both components,

editor and assistant, communicate with each other to remain consistent. Thus, allowing

the user to always make use of the one that best suits him.

The research questions studied in this paper are the following:

• RQ1: Is YASHE more usable for non-expert users compared to other ShEx

development tools?

• RQ2: Does the use of a graphical shape assistant support the creation and

use of ShEx schemas by non-expert users?

The rest of the paper is structured as follows. First, we will discuss the related work and

compare the features of the ShEx tools that we consider most relevant. Next, the system

architecture will be described. Afterwards, the methodology followed for the experiment

will be explained, followed by the results and discussions. Finally, we will briefly

describe the impact of one of the tools and end with conclusions and future work.

2. Related Work

In this section we discuss the existing text editors for ShEx(2.2) and their features (2.3).

2.1. ShEx text editors and related tools

ShEx2- Simple Online Validator3 (to abbreviate ShEx2 from now on) is an online tool

that allows to perform RDF[15] data validation using Shape Expressions. It incorporates

an editor for ShEx where we can write the schemas to conduct the validation. One of the

most key features offered by the tool for editing Shape Expressions is the detection of

syntactic errors. This feature is not performed automatically but occurs once the

validation is performed.

Wikidata has recently incorporated the EntitySchemas4 in its system. EntitySchemas is

Wikidata's way of calling items that are schemas written in ShEx. For the creation of this

items, they offer a tool (we will refer to it as wikidata from now on) that provides the

user with a plain text editor where he can create write his shapes. This editor does not

have any features for the user except the possibility to do and redo. However, once the

EntitySchema is created, it offers a colored syntax to visualize it.

1 https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
2 https://query.wikidata.org/
3 https://rawgit.com/shexSpec/shex.js/master/packages/shex-webapp/doc/shex-simple.html
4 https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas

Ace-shexc-user 5 is a Shape Expressions text editor born from the ace 6 library that

provides colored syntax and real-time grammar error detection.

Validata[6] is a tool to help generate RDF documents by validating against schemas

written in Shape Expressions. This tool offers us the possibility to create our own Schema

through a text editor with some features such as line numbering and the possibility to

undo and redo operations.

Shape designer[5] is a graphical tool for the creation of schemas in ShEx and

SHACL[11] given an RDF dataset. It incorporates a text editor for both languages with

features such as colored syntax and line numbering.

As for more popular editors, such as Sublime Editor7, there is a plugin for ShEx called

ShEx_Sublime_package8 that offers a colored syntax as well as some autocompletion

mechanisms mainly focused on Wikidata. There is also a ShEx extension for Vscode 9

that offers colored syntax and Wikidata snippets.

2.2. ShEx tools features

Table 1 shows the functionalities available in 9 tools that support the creation and editing

of Shape Expressions. Among these features we include those that seem to us basic for

any editing tool, as well as others that are more domain specific. Some of the tools are

dedicated editors intended entirely for ShEx editing while others have another specific

purpose.

YASHE and ShExAuthor have the highest number of functionalities with respect to

the other tools (13/16). Some of the most basic ones, such as colored syntax or line

numbering are present in 7 of the 9 defined tools. However, there are other functionalities

that are only available in some of them. One of these functionalities is validation. Among

all the tools with which we compared ourselves, only ShEx2-Simple Online Validator

and Shape Designer have this functionality. Using these tools, we can set the data to

validate or in the case of ShEx2 run a SPARQL query against endpoints such as Wikidata

and automatically validate each of the results against our schema. This is very useful

when creating and editing shapes since we can directly check the integrity of our data or

those of large sources of knowledge and check if our shapes are well constructed.

YASHE and ShExAuthor do not have this functionality, as we consider that our tools

focus only on editing tasks, leaving it to other tools to integrate this type of tasks.

Another functionality present in only one tool is the possibility to edit and create

EntitySchemas. Wikidata offers a plain text editor to perform this task. This editor only

offers 2 of the 17 features defined in Table1. This could facilitate the appearance of

grammatical errors in the EntitySchemas. YASHE has a search engine to visualize all

the EntitySchemas of Wikidata. However, there is no possibility to save new

EntitySchemas or update existing ones directly from YASHE.

Grammatical error detection is present in 4 of the 9 tools compared. In ShEx2, the

detection of grammatical errors is not performed in real time, but it is necessary to try to

5 https://github.com/shexSpec/ace-shexc-user
6 https://ace.c9.io/
7 https://www.sublimetext.com/
8 https://github.com/andrawaag/Shex_Sublime_package
9 https://github.com/weso/vscode-shex-extensions/tree/master/shex-languaje-extension

carry out a validation so that the tool notifies us with the errors made in case there

are any. Ace-shexc-user, YASHE and ShExAuthor notify errors in real time, while

editing is in progress.

No web tool supports autocompletion mechanisms except the ones presented in this

paper. The plugin for Vscode offers the possibility to autocomplete Wikidata prefixes.

The plugin for Sublime allows autocompletion of Wikidata prefixes and items.

The graphical assistant feature is only present in 2 tools. On the one hand, Shape

Designer offers a graphical interface for the definition of shape patterns together with a

node selection query for the automatic creation of schemas. On the other hand,

ShExAuthor offers a graphical editor for shape creation using a system of boxes and

colors. Both systems offer a text editor to visualize the schema under construction.

ShEx2 Wikidata

Ace

ShEx

User

Validata
Shape

Designer

Sublime

Plugin

Vscode

Plugin
YASHE ShExAuthor

Web Tool + + + + - - - + +

Line Numbers - - + + + + + + +e
Syntax

highlighting
- +/- a + - + + + + +e

Error Checking +g - +h - - - - +h +eh

Autocompleters - - - - - +b +c +d +e

Tooltips - - - - - - - +i +ei

Undo/Redo + + + + + + + + +e

Dark mode - - - - - + + + +e

Load - - - - + + + + +e

Download - - - - + + + + +e

Share Schema - - - - - - - + +e

Validation + - - - + - - - -
Save

Entity Schema
- + - - - - - -f -

Ghrapic

Assistant
- - - - + - - - +

Pretty Pritner - - - - - - + +

Table 1. ShEx Tools Features Matrix

a
Color syntax it´s not available while editing. It´s only visible after saving the schema.

b
Autocompletion of Wikidata prefixes and Wikidata items.

c
Autocompletion of Wikidata prefixes.

d
Autocompletion of prefixes, aliases, keywords, defined shapes and Wikidata and Wikibase items.

e
Feature inherited by YASHE..

f
EntitySchemas can be searched and displayed.

g
Not real time error checking.

h
Real time error checking.

i
Tooltips for Wikidata and Wikibase items

.

3. Description

In this section we will describe the systems that have been developed. Both will be

described, and aspects related to their architecture, their graphical interface, their

functionalities, and their limitations will be explained.

3.1. YASHE

YASHE is a ShEx text editor that was born as a fork of the YASQE editor, which is

based on SPARQL. It offers a working environment suitable for creating and editing

schemas in ShEx. It has a Web site where the editor can be used

(www.weso.es/YASHE/). However, this tool is intended to be easily integrated into other

web applications, as we will see later.

3.1.1. Architecture

This tool runs completely server-side and is mainly developed in HTML5[19] and

JavaScript[17], making use of libraries such as jQuery10 and Codemirror11. Codemirror

provides a basic text editor for any language, with features such as colored syntax and

auto-completion mechanisms. YASHE takes this library as a base, adapts it, and extends

it to meet the needs of ShEx. All the functionalities offered by the library are accessible

from YASHE, making it highly customizable. FlintSparqlEditor defines a grammar for

SPARQL in Prolog that generates a symbol table that Codemirror is able to interpret.

This symbol table establishes a relationship between tokens that allows us to know which

tokens can precede each other. Our system adapts this library for ShEx and makes use of

the symbol table to perform a lexical and syntactic analysis of the editor's content, thus

being able to provide a real-time grammatical error detection mechanism. This analysis

is performed every time there is a change in the content of the editor. The tokens are

checked one by one and when an incorrect token is detected, the user is notified

indicating the line where the error occurred.

3.1.2. Features

The most relevant features of the tool are described below:

1. Syntax highlighting: This feature is intended to assist in the identification and

differentiation of the most important elements of the language.

2. Syntax Checking: Syntax errors are reported to the user each time a change

is made in the editor. These errors are accompanied by a help message to guide

the user on the errors made.

3. Autocompleters: The autocompletion mechanisms are one of the most useful

features of the tool. They allow us to save time when typing, as well as provide

us with information that we might not have been aware of previously. YASHE

offers the following auto-completion mechanisms:

a. Prefixes: Within the world of the semantic web and of the languages

that form it, the definition of prefixes plays a very important role. The

number of prefixes is very high, and it is tedious to have to remember

10 https://jquery.com/
11 https://codemirror.net/

each of them. By using Prefix.cc12, YASHE offers a list with the most

used ones every time a prefix is defined . We can search through this

list and autocomplete.

b. Keywords, Alias, and Shapes: This mechanism offers the possibility

to autocomplete language keywords (prefix, closed, minlength, etc.),

aliases of prefixes that are already defined (schema: , xsd:), or Shapes

that are also defined (@<human>).

c. Wikidata Items: One of the big problems when working with

Wikidata and languages like ShEx or RDF is the problem of

identifiers. The way wikidata works with elements in a unique way is

by assigning them an identifier. This identifier is given by a letter (Q

if it is an entity or P if it is a property) followed by a number. This

solution makes it possible to treat the elements in a unique way, but

it is not very readable for humans when we refer to one of these

elements from these languages. In addition, it is necessary for users

to learn these identifiers. Currently wikidata has millions of items13,

which makes it impossible for humans to retain such a large amount

of information. Therefore, every time we want to reference an

element of Wikidata we will have to go to its website and look for its

associated identifier. YASHE offers the possibility to perform a

search by name from the editor itself, allowing to autocomplete its

unique identifier once we have found the desired item.

d. Wikibase Items: We can make use of the above functionality for any

instance of Wikibase without the need to configure anything

additional in YASHE. It takes care through the defined prefixes to

search for possible Wikibase instances and allow us to search and

suggest items from those instances in the same way as for Wikidata.

4. Tooltips: The problem associated with Wikidata identifiers mentioned above

in the section on autocompletion mechanisms, not only affects when writing

our schemas but also when reading them. So, when we want to read a schema

that makes use of many Wikidata elements the task becomes highly tedious.

That is why YASHE offers visual help mechanisms (tooltips) that show us

information of the Wikidata element over which we pass our mouse. As for

the autocomplete mechanisms, this functionality is available for other

Wikibase instances than Wikidata.

3.2. ShExAuthor

ShExAuthor is a web application that provides the user with a graphical assistant for the

creation of Shape Expressions (https://www.weso.es/shex-author/). It integrates YASHE

into its system to display the created shapes and to allow the user to interact with both

the editor and the assistant according to his preferences. When a change is made in the

assistant it is propagated to the editor and vice versa. It runs entirely client-side and is

developed mainly in HTML5 and JavaScript making use of the React.js library14.

12 https://prefix.cc/
13 https://www.wikidata.org/wiki/Wikidata:Statistics/en
14 https://es.reactjs.org/

ShExAuthor is intended to be used by users not so closely related to the IT world who

are more accustomed to using visual tools rather than computer languages, such as, for

example, domain experts from other non-IT fields. These play a important role in the

Semantic Web, since it needs their knowledge to represent all kinds of information, or

as in the case of ShEx, to validate it. If we want to validate information about biological

genes, we need to create a Schema that allows us to carry out this task. And for this, it is

necessary to have a domain expert who has the necessary knowledge in the field.

However, it is very likely that this domain expert does not have any knowledge in ShEx,

so he/she will have to transfer his/her knowledge to a person who does. What

ShExAuthor aims to achieve is that the domain expert himself creates the schemas

through an environment that is comfortable and familiar to him, without the need to

delegate this task to someone else.

3.2.1. User Interface

The ShExAuthor user interface consists of three main panels or components: tools panel

(Figure 1a), graphical assistant(Figure 1b) and text editor (Figure 1c).

The tools panel allows us to perform do/undo operations, load and unload our schemas,

toggle light/dark mode or even load sample examples.

The graphical assistant represents the content of the text editor in a graphical way

through a system of boxes for the representation of shapes, triple constraints and prefixes

and a color code for each language element. The assistant has a main tab where the shapes

are represented and a secondary tab for the representation of prefixes. Each shape is

represented by a blue box containing a series of triple constraints. (Figure 2 left). We can

configure features of the shape itself (e.g. prefix) or we can create new triple constraints

or individually configure the existing ones. Each triple constraint is represented by a

brown box. We can configure it by clicking on the wrench of its color. Figure 2 left

shows the triple constraint that establishes a "name" constraint of type "string". Each

one has the following configuration tabs:

Figure 1. ShExAuthor user interface which consists of: a tool panel (A), the graphic assistant (B) and a

ShEx text editor (YASHE) (C)

• Triple: In this tab we can configure the type of the triple constraint itself.

We can define if it is going to be an IRI (<...>) or if it is going to use a

prefix and, in that case, we can set which one it is going to use.

• Constraint: The constraint tab allows us to set the type of constraints set

by the triple constraint. By default, it offers primitive values (string, integer,

date and boolean) but it is possible to carry out a more advanced

configuration (valuesets, literal, bnnode, etc.).

• Facet: This tab allows us to set length restrictions (length, minlength,

maxlength, totaldigits, etc.).

• ShapeReference: In this tab we can reference another Shape already

created (@:User).

• Cardinality: The cardinality tab allows us to set all the restrictions related

to cardinality (Exactly one, zero or more, one or more, range, etc.).

All these will be represented in the text editor in the same color as they appear in the

assistant.

The prefixes are represented by a pink box (Figure 2 right). Each of them has two fields

to be filled in by the user: the prefix alias and its IRI. We can create new prefixes, edit

existing ones, or delete them. To use the prefixes from the graphical assistant, they must

be defined here.

The text editor (YASHE) is a representation of the shapes and triples created in the

graphical assistant. In addition, we can interact directly with it so that the changes we

make will be updated automatically in the graphical assistant. When we create a new

shape or edit an existing one, YASHE notifies the graphical assistant so that it

synchronizes with the new content offered in the editor.

3.2.2. Limitations

There are some shapes that cannot be represented in the graphical assistant. One of the

existing limitations in ShExAuthor are the nested Shapes. In ShEx we can define an

inlineshape (Validating RDF Data[18] chapter 4.6.5) inside a triple constraint. Inside

this new Shape we will define new triple constraints. This causes that the nesting of

Figure 2. Shape and tiple constraints representation (left) and prefixes representation (right).

Shapes does not have any kind of limit. In plain text it is not a problem to represent this

type of shapes (maybe to read or understand them). However, when representing them

in a graphical assistant it is a problem. However, ShExAuthor offers support for this type

of shapes up to a nesting of at least 5 levels depending on the monitor size.

Another limitation of the tool is the representation of logical operators. In ShEx we can

define a shape with a series of triple constraints and/or others (using the OR/AND

operator). To represent this within the graphical assistant would require increasing the

number of interface components significantly, thus raising the degree of complexity of

the interface and making it less visually appealing. That is why ShExAuthor does not

support this type of language operators.

Comments are not represented in the wizard either. We can write comments in the text

editor, however, ShExAuthor will remove them once we make use of the assistant.

When ShExAuthor detects any of the elements that represent a limitation, it disables the

assistant by displaying an error message to the user specifying that the Shape entered in

the text editor is too complex to be represented by the assistant.

4. Methodology

Since 1893, proposals have been made to evaluate text editors [1,7]. The methodology

we have followed is based on the one used in [8]. The documents used for the experiment

(manuals, examples, tasks, etc.) are available at https://github.com/mistermboy/shex-

edit-tools-paper.

4.1. Experiment Design

The experiment aims to make a comparison between 4 of the tools shown in Table 1. On

the one hand, the 2 presented in this paper (YASHE and ShExAuthor) and on the other

hand the 2 that we consider most important in the current scenario. One of them is ShEx2,

which together with RDFShape[4] are the only validation tools recommended on the

official ShEx website [https://shex.io/]. We do not compare ourselves with RDFShape

as this tool integrates YASHE into its system to support schema creation and editing.

The other tool we compare ourselves with is the one provided by Wikidata for the

creation of EntitySchemas as this is the largest source of knowledge of the Semantic Web

and one of the strongest projects betting on ShEx.

The experiment consisted of two tasks of editing and creation of Shape Expressions. The

first task asked for the creation of a schema for the validation of an RDF model. The

second task consisted in the creation of a schema where a series of constraints were

collected using Wikidata properties.

During the experiment, quantitative measurements were taken using the Mousotron15

tool, which provided us with measurements such as distance traveled with the mouse,

clicks, number of keystrokes, etc. Qualitative measures were also collected through an

online Office 365 questionnaire. In it, 12 statements were established where users had to

express their agreement based on a Likert scale[9]. The statements collected in the

questionnaire were as follows:

15 https://www.blacksunsoftware.com/mousotron.html

S1. The experience with the tool was satisfactory.

S2. The tool was easy to use

S3. The appearance of the tool seems to me to be adequate.

S4. It was easy to learn how to use the tool.

S5. I consider that the tool could be useful in my job, university, etc.

S6. The tool is intuitive.

S7. The tool leads to commit some errors.

S8. The tool favors the use of ShEx.

S9. The system has a quick response.

S10. The functionalities offered by the tool seem to me sufficient for a

shapes creation tool.

S11. The functionalities offered by the tool to work with Wikidata seem

useful to me

S12. The error messages were useful to solve problems.

4.2. Conduction

We had 16 students of the Master in Web Engineering of the University of Oviedo (14

boys and 2 girls). All of them had a degree (240 FTE credits) in Computer Science and

12 of them were taking the course New Aspects in Semantic Web, a two-week course (3

hours per day) where they were taught aspects such as RDF or ShEx. The remaining 4

had taken the course the previous year and all of them had passed it. Prior to taking this

course they had no knowledge of Semantic Web. All of them were asked for prior

consent.

For the students who were taking the course, the experiment was carried out in the usual

classroom, so that the students were in a place that was familiar to them and that could

not interfere negatively with the results. In addition, it was carried out during the last

session of the course, so that the students had a minimum knowledge of the subject.

Students who had already taken the course the previous year were given the same test,

but online, where each student could use his or her own computer.

To carry out the experiment, each student was randomly assigned a tool and was provided

with instructions and a manual for the use of the assigned tool. They were also provided

with a document with examples of schema construction for the validation of RDF data

and Wikidata items.

The instructions to be followed by each student were as follows:

1. Open the web page of the assigned tool and delete the given example

2. Open Mousotron, restart it and press the start button.

3. Start with the first task.

4. Once the first task is finished, stop the Mousotron and capture the

results.

5. Restart the Mousotron.

6. Start with the second task.

7. Once the second task is finished, stop the Mousotron and capture the

results.

8. Fill in the Office 365 questionnaire.

4.3. Analysis

Both qualitative and quantitative data were collected and anonymized. It was necessary

to calculate some of the variables using those provided by the students. The completeness

percentage (CP) was calculated using three measures: the number of correct prefixes

generated 16%, the number of correct shapes generated 13% and the number of well

generated and required triple constraints 71%. We have assigned these values by

calculating the percentage of each element generated with respect to the total number of

elements generated.

Being P the number of prefixes, the calculation of the completness percentage for the

prefixes can be calculated as:

𝐶𝑃𝑃𝑟𝑒𝑓𝑖𝑥𝑒𝑠 = 1 −
𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 − 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

Pgenerated represents the generated prefixes and Pcorrect the number of them generated

correctly. Being S the number of shapes, the calculation of the CP for the shapes can be

calculated as:

𝐶𝑃𝑆ℎ𝑎𝑝𝑒𝑠 = 1 −
𝑆𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 − 𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑆𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

Sgenerated represents the generated shapes and Scorrect represents the number of correctly

generated shapes. We do not consider that the triple constraints are well generated when

determining if the shape is correct or not.TC being the number of triple constraints, the

calculation of the CP for the triple constraints can be calculated as:

𝐶𝑃𝑇𝑟𝑖𝑝𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 1 −
𝑇𝐶𝑛𝑒𝑒𝑑𝑒𝑑 − 𝑇𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑇𝐶𝑛𝑒𝑒𝑑𝑒𝑑

TCneeded represents the number of triple constraints necessary to perform the exercise

correctly. TCcorrect represents the number of correct triple constraints generated by the

user. If the user uses a single triple constraint to represent a number of constraints greater

than 1, this triple constraint will have a value equal to the number of constraints it fulfills.

Therefore, the total CP can be represented as follows:

𝐶𝑃 = 0.16 ∗ 𝐶𝑃𝑃𝑟𝑒𝑓𝑖𝑥𝑒𝑠 + 0.13 ∗ 𝐶𝑃𝑆ℎ𝑎𝑝𝑒𝑠 +
0.71 ∗ 𝐶𝑃𝑇𝑟𝑖𝑝𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Finally, we calculate the precision. This value establishes a relationship between the time

consumed to perform the task and the time of the fastest user, considering the CP

obtained. Being Tun the elapsed time of user n and CPun the CP of user n, we can calculate

the accuracy as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑢𝑛

𝑚𝑖𝑛 ({𝑇𝑢1, … , 𝑇𝑢𝑛})
∗ 𝐶𝑃𝑢

The other variables used for the analysis were: number of keyboard keys pressed

(KeyStrokes), number of left mouse button clicks (LeftButton), number of right mouse

button clicks (RightButton), number of double clicks with the left mouse button

(DoubleClicks) and number of scrolls made with the mouse (MouseWheel).

IBM SPSS version 28.0.1.1 was used for statistical analysis. Comparisons between the

four groups were performed using a One Way ANOVA where a normal distribution was

assumed, and outliers were discarded when necessary.

5. Results

Of the 16 users we had for the experiment, one of them, who had been assigned the

ShExAuthor tool, did not send his results or complete the online questionnaire. Another

of them, who used the ShEx2, did not complete the online questionnaire either.

Table 2. Descriptive statistics for task 1.

Measure Group Mean Std. Deviation Minimum Maximum

Time

ShExAuthor 667.0000 253.2252 378.0000 850.0000

YASHE 691.2500 379.4429 356.0000 1175.0000

ShEx2 1003.5000 453.8564 447.0000 1480.0000

Wikidata 384.5000 72.7668 303.0000 480.0000

Distance

ShExAuthor 1707.0000 720.1548 1096.0000 2501.0000

YASHE 1201.2500 1075.6779 281.0000 2554.0000

ShEx2 931.2500 781.3289 253.0000 1896.0000

Wikidata 436.2500 255.5783 164.0000 724.0000

KeyStrokes

ShExAuthor 462.0000 149.9233 339.0000 629.0000

YASHE 868.5000 307.0228 510.0000 1260.0000

ShEx2 943.0000 84.2496 818.0000 1001.0000

Wikidata 797.5000 155.0495 653.0000 1016.0000

LeftButton

ShExAuthor 282.0000 25.4558 264.0000 300.0000

YASHE 120.2500 62.2756 72.0000 205.0000

ShEx2 106.0000 86.4214 34.0000 217.0000

Wikidata 48.0000 20.8966 20.0000 69.0000

RightButton

ShExAuthor 3.5000 2.1213 2.0000 5.0000

YASHE 1.5000 1.2910 0.0000 3.0000

ShEx2 0.7500 0.9574 0.0000 2.0000

Wikidata 0.0000 0.0000 0.0000 0.0000

DoubleClicks

ShExAuthor 23.5000 16.2635 12.0000 35.0000

YASHE 14.7500 8.0571 3.0000 20.0000

ShEx2 14.5000 17.5404 2.0000 40.0000

Wikidata 3.0000 2.8284 1.0000 7.0000

MouseWheel

ShExAuthor 1884.5000 2366.6864 211.0000 3558.0000

YASHE 620.3333 405.9191 324.0000 1083.0000

ShEx2 98.2500 74.6654 5.0000 168.0000

Wikidata 52.6667 47.1628 0.0000 91.0000

Completness

Percentage

ShExAuthor 0.8542 0.2190 0.6023 1.0000

YASHE 0.8509 0.1699 0.6023 0.9602

ShEx2 0.6262 0.4244 0.0000 0.9403

Wikidata 0.5722 0.3359 0.0785 0.7933

Precision

ShExAuthor 0.4588 0.2835 0.2147 0.7697

YASHE 0.4876 0.2799 0.1553 0.7496

ShEx2 0.2583 0.2120 0.0000 0.5161

Wikidata 0.4641 0.3009 0.0636 0.7933

In Table 2 we can observe the descriptive statistics for the quantitative results of task 1.

The comparison between the four groups in terms of a One Way ANOVA showed

statistically significant differences between the four tools and the number of left clicks

made by the users (LeftButton) F(3,10)=6.850, p=0.009, ω=0.673. Subsequently, Tukey's

test determined that the number of left clicks performed by users using the ShExAuthor

tool (282 ± 18 clicks) is higher than the number of clicks performed by users using

ShEx2 (106 ± 43.21 clicks), YASHE(120.25 ± 31.138 clicks) and Wikidata (48 ± 10.448

clicks). Statistically significant differences were also found among the four tools and the

number of right clicks made by users (RightButton) F(3,10)=4.750, p=0.026, ω=0.588.

Scheffé's test determined that the number of right clicks performed by users using the

ShExAuthor tool (3.5 ± 1.5 clicks) is higher than the number of clicks performed by users

using the Wikidata tool (0 ± 0 clicks). Finally, statistically significant differences were

found between the four tools and the number of keystrokes made by users (KeyStrokes)

F(3,11)=3.841, p=0.042, ω=0.512. Tukey's test determined that the number of keystrokes

performed by users using the ShExAuthor tool (462 ± 86,558 keystrokes) is lower than

the number of clicks performed by users using the ShEx2 tool (943 ± 42,125 keystrokes).

Table 3. Descriptive statistics for task 2.

Measure Group Mean Std. Deviation Minimum Maximum

Time

ShExAuthor 676.7500 226.7486 493.0000 1007.0000

YASHE 449.6667 174.7350 248.0000 556.0000

ShEx2 849.2500 122.5843 754.0000 1015.0000

Wikidata 713.5000 452.9087 278.0000 1212.0000

Distance

ShExAuthor 1887.5000 523.4721 1382.0000 2472.0000

YASHE 557.6667 348.6909 197.0000 893.0000

ShEx2 1228.7500 987.5942 0.0000 2418.0000

Wikidata 1622.2500 1342.8406 149.0000 3036.0000

KeyStrokes

ShExAuthor 470.5000 209.5272 166.0000 645.0000

YASHE 683.0000 256.5093 391.0000 872.0000

ShEx2 696.6667 378.9318 270.0000 994.0000

Wikidata 871.7500 406.2449 512.0000 1398.0000

LeftButton

ShExAuthor 238.6667 120.9807 141.0000 374.0000

YASHE 72.3333 37.5810 29.0000 96.0000

ShEx2 184.3333 80.2579 137.0000 277.0000

Wikidata 156.2500 125.4469 12.0000 271.0000

RightButton

ShExAuthor 0.6667 1.1547 0.0000 2.0000

YASHE 0.3333 0.5774 0.0000 1.0000

ShEx2 0.6667 0.5774 0.0000 1.0000

Wikidata 0.7500 1.5000 0.0000 3.0000

DoubleClicks

ShExAuthor 25.3333 22.2336 12.0000 51.0000

YASHE 9.0000 10.1489 0.0000 20.0000

ShEx2 23.0000 22.2711 3.0000 47.0000

Wikidata 11.7500 13.5247 0.0000 29.0000

MouseWheel

ShExAuthor 1219.3333 1848.1927 12.0000 3347.0000

YASHE 1272.0000 1661.7009 97.0000 2447.0000

ShEx2 1220.0000 1042.2951 155.0000 2238.0000

Wikidata 427.6667 364.2668 8.0000 662.0000

Completness

Percentage

ShExAuthor 0.8861 0.2278 0.5444 1.0000

YASHE 0.8915 0.1879 0.6746 1.0000

ShEx2 0.5710 0.5087 0.0000 1.0000

Wikidata 0.7493 0.4480 0.0785 1.0000

Precision

ShExAuthor 0.3357 0.0886 0.2463 0.4239

YASHE 0.5252 0.1294 0.4460 0.6746

ShEx2 0.1768 0.1562 0.0000 0.3289

Wikidata 0.2867 0.2425 0.0700 0.6320

For the variables Time, Distance, DoubleClicks, MouseWheel no statistically

significant differences were found. In the case of the CP variable, despite there being no

statistically significant differences F(3,11)=0.846,p=0.497, ω=0.188, YASHE and

ShExAuthor show better results, obtaining a mean of 0.8501 and 0.8541 respectively

versus 0.6262 in the case of ShEx2 and 0. 5721 in the case of Wikidata. For the Precision

variable, no statistically significant differences were found either F(3,11)=0.615,

p=0.619, ω=0.144. However, YASHE obtains a higher mean precision (0.4875) with

respect to ShExAuthor (0.45879), ShEx2 (0.2583) and Wikidata (0.4641).

In Table 3 we can see the descriptive statistics for the results of task 2. The

comparison between the four groups in terms of a One Way ANOVA showed no

significant differences for any of the variables related to the use of the mouse and the

keyboard. Nor were statistically significant differences found for the variable Time

F(3,11)=1.1652, p=0.368, ω=0.241. Despite this, YASHE and ShExAuthor obtain lower

values (449.66s and 676.75s respectively) versus ShEx2 (849.25s) and Wikdiata (713.5s).

For the CP variable, no statistically significant differences were found F(3,11)=0.590,

p=0.634, ω=0.139. However, our tools obtain higher values (0.8915 and 0.8861)

compared to ShEx2 and Wikidata (0.571 and 0.7492 respectively). Moreover, they

obtain higher Precision(0.5252 and 0.3356) with respect to ShEx2 (0.1767) and Wikdiata

(0.2867) even though the differences are still not statistically significant F(3,11)=2.555,

p=0.109, ω=0.411.

The results of the qualitative analysis (Figure 3) showed no statistically significant

differences for any of the statements in the questionnaire. Despite this, ShExAuthor

achieved the highest scores in 7 statements (of a positive nature) out of the 10 where all

the tools participated (in one of them tying with Wikidata and in another with YASHE).

It also obtained the lowest score (2.34) in S7, where it was stated that the tool gave rise

to certain errors and where YASHE obtained the second lowest score (2.75) and ShEx2

obtained the highest score (4.5). On the other hand, YASHE obtained the highest score

in 3 statements (of a positive nature) of the 10 common ones (in one of them tying with

ShExAuthor) and the highest score (4.5) in S12, in which all the tools participated except

Wikidata for not having error messages and where ShExAuthor obtained the lowest score

(1.34).

Figure 3. Results for Likert scale questionnaire

2

2,5

3

3,5

4

4,5

5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

ShExAuthor YASHE ShEx2 Wikidata

6. Discussion

In task 1, the statistically significant differences found in the KeyStrokes, LeftButton and

RightButton variables are since the way of working in ShExAuthor. It´s more common

to use the mouse buttons to build the shape and where the use of the keyboard is more

limited. This difference in the use of the mouse and the keyboard could be related to an

increase in the time consumed compared to the other tools. In the case of the number of

keystrokes compared to the other tools, it would be expected that there would be no

significant difference between ShEx2 and Wikidata since neither of them offers any

feature that allows us to save more typing. In the case of YASHE, since it offers

autocompletion mechanisms, a lower number of keystrokes could be expected. The fact

that no significant differences were obtained with respect to the other two text editors

could be since the users did not have enough experience with the tool to make use of the

autocomplete features or that the nature of the task did not offer too many scenarios in

which to make use of these functionalities. The non-existence of statistically significant

differences in the second task for the variables mentioned above could be since it

required the representation of a lower number of constraints than the first task and also

less restrictive. Thus, even using ShExAuthor did not require a very high number of

clicks or keystrokes when using one of the text editors.

The higher Completness Percentage obtained by users who used our tools in both

tasks could be related to several reasons. Firstly, by making exclusive use of the

ShExAuthor graphical assistant, no syntax errors are made, so if the user establishes all

the restrictions required by the task, he/she is assured the maximum score without

suffering any type of penalty. Secondly, syntax error detection mechanisms could

positively influence the detection and correction of errors by the user, thus decreasing

the penalties in obtaining this variable. Wikidata is the only one of the four tools that

does not have this functionality. Its score obtained was the lowest with respect to the

other tools. On the other hand, although ShEx2 offers a syntactic error detection

mechanism, this is not automatic; instead, it is necessary to click on a button on the tool

for errors to be reported. This could cause users to make less use of it or forget to use it

consistently. YASHE attempts to mitigate this problem by notifying the user of syntactic

errors made in real time. In this way, the user might detect a greater number of errors

even if he or she is not paying much attention to the task. The usefulness of this

functionality is supported by the users in the results obtained in the qualitative analysis,

where YASHE obtained a positive score and the highest with respect to the other tools

in the statement where this type of mechanism was valued (S12). Finally, ShExAuthor

and YASHE are the only tools compared that offer syntax highlighting. This favors the

identification of language elements. So, it could contribute to a better identification of

errors by the users.

The fact that YASHE obtains a higher accuracy difference with respect to the other

tools in the second task compared to the first one, is due to an improvement in the user's

times. This improvement could be due to the functionalities offered by YASHE in front

of the naturalness of the task itself. As it is focused on the use of Wikidata items, users

can make use of the Wikidata autocompletion mechanism. This allows searching directly

from the tool itself and avoids having to go to Wikidata itself to search for the desired

item. The usefulness and use of this functionality is supported by users in the results

obtained in the qualitative analysis, where YASHE obtained a positive score.

One of the reasons why the differences between completness percentage and

precision are not significant could be the size of the sample we had to carry out the

experiments. We cannot say that YASHE is more usable for non-expert users than the

other tools compared. However, we can say that our tool offers a competitive solution to

the compared tools. This comes to answer RQ1.

The results obtained for our tools in the qualitative analysis (Figure 3) show a

positive response from users. The fact that ShExAuthor obtained the worst score with

respect to the other tools in the statement where the usefulness of the error detection

mechanisms was evaluated (S12) is because this tool does not allow syntactic errors to

be made when only the graphical assistant is used. It is therefore likely that the users who

tested this tool did not make use of this functionality at any time. The statement (of a

positive nature) where our tools obtained the lowest score was the one that valued the

usefulness of the tool at work or at the university (S5). This could be since the users we

used for the experiment are not users who habitually use semantic web technologies.

To answer RQ2, we cannot claim that the use of a graphical assistant favors the

creation and use of ShEx schemas by non-expert users. We consider that there is a need

to further research on this area. However, we have presented a graphical and competitive

solution to the compared tools and with which users have had a positive response.

7. Impact

Earlier it was noted that YASHE is intended to be integrated into other applications and

projects. The clearest example is ShExAuthor, which integrates YASHE into its system

by delegating to it all the text editing functionalities to focus only on the graphical

assistant. Currently, the tools that integrate YASHE into your system are the following:

RDFShape

RDFShape[4] is an RDF playground with a special focus on validation

languages such as ShEx and SHACL. It integrates YASHE into its system as

the main editor for all the tool's features that involve the use of ShEx.

WikiShape

WikiShape16 provides a playground for RDF focused exclusively on Wikidata.

Like RDFShape, it integrates YASHE into its system as the main editor.

ShExML

ShExML[8] is a language based on ShEx for mapping and merging

heterogeneous data sources. It´s website17 integrates YASHE as an editor to

visualize the Shapes generated by the language.

Shumlex

Shumlex18 is a project that aims to develop a tool to enable integration into ShEx

and UML. It has a website where it integrates YASHE for all editing tasks

involving Shape Expressions.

16 https://wikishape.weso.es/
17 http://shexml.herminiogarcia.com/
18 https://github.com/fidalgoLXXVI/Shumlex

8. Conclusions and Future Work

A usability study has been carried out for the comparison of four ShEx tools. The text

editor we have presented (YASHE), obtained the best results in terms of the relationship

time and percentage of task completeness (precision). However, comparisons between

tools did not show statistically significant differences for that relationship. This could be

due to the sample size we had available to conduct the experiments. Therefore, we cannot

claim that YASHE improves usability in non-expert users. On the other hand, we can

state that our tool, in addition to introducing new functionalities with respect to the

existing ones, offers a competitive solution to the tools compared.

The first (to our knowledge) graphical assistant for shapes creation in ShEx has been

introduced. Although this tool did not obtain statistically significant differences with

respect to the others, it was the tool that obtained the highest completeness percentage

between the two tasks performed in the experiments. In addition, it was the tool that was

best received by the users in the survey. We can affirm that the use of a graphical assistant

for shapes creation in ShEx offers a competitive solution to the traditional text editors

that have been compared.

As future work, an experiment with a larger number of users could be carried out to

see if the differences become statistically significant. On the other hand, a larger number

of tools could be tested, as well as different user profiles to see if there are differences

between them.

References

[1] Roberts, T. L., & Moran, T. P. (1983). The evaluation of text editors: methodology and empirical results.
Communications of the ACM, 26(4), 265-283

[2] Rietvelda, L., & Hoekstraa, R. YASGUI: How do we Access Linked Data ?

[3] E. Prud’hommeaux, J.E. Labra Gayo and H. Solbrig, Shape expressions: an RDF validation and
transformation language, Proceedings of the 10th International Conference on Semantic Systems -

SEM ’14 (2014). doi:10.1145/2660517.2660523.

[4] Labra Gayo, J. E., Fernández-Álvarez, D., & Garcıa-González, H. (2018). RDFShape: An RDF playground
based on Shapes. In Proceedings of ISWC.

[5] Boneva, I., Dusart, J., Alvarez, D. F., & Gayo, J. E. L. (2019, October). Shape designer for ShEx and

SHACL constraints. In ISWC 2019-18th International Semantic Web Conference.
[6] Baungard Hansen, J., Beveridge, A., Farmer, R., Gehrmann, L., Gray, A. J. G., Khutan, S., ... & Splendiani,

A. (2015, December). Validata: an online tool for testing RDF data conformance. In Proceedings of the
8th semantic web applications and tools for life sciences international conference, Cambridge UK (Vol.

1546, pp. 157-166).

[7] Borenstein, N. S. (1985). The evaluation of text editors: a critical review of the Roberts and Morgan
methodology based on new experiments. ACM SIGCHI Bulletin, 16(4), 99-105.

[8] García-González, H., Boneva, I., Staworko, S., Labra-Gayo, J. E., & Lovelle, J. M. C. (2020). ShExML:

improving the usability of heterogeneous data mapping languages for first-time users. PeerJ Computer
Science, 6, e318.

[9] Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 140, 55.

[10] Rietveld, L., Hoekstra, R., & Schlobach, S. (2014). Feeling the pulse of linked data. In Proceedings of
the Knowledge Engineering and Knowledge Mangement Conference.

[11] H. Knublauch, D. Kontokostas, Shapes constraint language (SHACL), W3C 545 recommendation 20

(07) (2017).
[12] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P.

Van Kleef, S. Auer, et al., Dbpedia–a largescale, multilingual knowledge base extracted from wikipedia,

Semantic web 530 6 (2) (2015) 167–195.
[13] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative knowledgebase”. In:

Communications of the ACM 57.10 (2014), pp. 78–85.

[14] Rietveld, L., & Hoekstra, R. (2017). The YASGUI family of SPARQL clients 1. Semantic Web, 8(3),

373-383.

[15] R. Cyganiak, D.Wood, M.Lanthaler, RDF 1.1 Concepts and Abstract Syntax (W3C Recommendation 25
February 2014).

[16] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF (W3C Recommendation 15

January 2008).
[17] ECMA-357, ECMAScript for XML (E4X) Specification, 2nd edition, European Computer

Manufacturers Association, Geneva, Switzerland, 2005.

[18] Gayo, J. E. L., Prud'Hommeaux, E., Boneva, I., & Kontokostas, D. (2017). Validating RDF data.

Synthesis Lectures on Semantic Web: Theory and Technology, 7(1), 1-328.

[19] Patel, K. (2013). Incremental journey for World Wide Web: introduced with Web 1.0 to recent Web 5.0–

a survey paper. International Journal of Advanced Research in Computer Science and Software
Engineering, 3(10).

