
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Wikidata subsetting: approaches, tools, and
evaluation
Seyed Amir Hosseini Beghaeiraveri a,*,**, Jose Emilio Labra Gayo*, b, Andra Waagmeester*, c,
Ammar Ammar d, Carolina Gonzalez e, Denise Slenter d, Sabah Ul-Hasan f, Egon Willighagen d,
Fiona McNeill g and Alasdair J G Gray a

a School of Mathematical and Computer Science, Heriot-Watt University, Edinburgh, UK
E-mail: sh200@hw.ac.uk
E-mail: A.J.G.Gray@hw.ac.uk
b University of Oviedo, Oviedo, Spain
E-mail: labra@uniovi.es
c Micelio
E-mail: andra@micel.io
d Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht University
E-mails: a.ammar@maastrichtuniversity.nl, denise.slenter@maastrichtuniversity.nl,
egon.willighagen@maastrichtuniversity.nl
e The Scripps Research Institute
E-mail: agonzalez@scripps.edu
f Hologic Inc
E-mail: bysabahulhasan@gmail.com
g School of Informatics, The University of Edinburgh UK
E-mail: f.j.mcneill@ed.ac.uk

Abstract. Wikidata is a massive Knowledge Graph (KG) including more than 100 million data items and nearly 1.5 billion
statements, covering a wide range of topics such as geography, history, scholarly articles, and life science data. The large volume
of Wikidata is difficult to handle for research purposes; many researchers cannot afford the costs of hosting 100 GB of data. While
Wikidata provides a public SPARQL endpoint, it can only be used for short-running queries. Often, researchers only require a
limited range of data from Wikidata focusing on a particular topic for their use case. Subsetting is the process of defining and
extracting the required data range from the KG; this process has received increasing attention in recent years. Specific tools
and several approaches have been developed for subsetting, which have not been evaluated yet. In this paper we survey the
available subsetting approaches, introducing their general strengths and weaknesses, and evaluate four practical tools specific
for Wikidata subsetting – WDSub, KGTK, WDumper, and WDF – in terms of execution performance, extraction accuracy, and
flexibility in defining the subsets. The results show that all four tools have a minimum of 99.96% accuracy in extracting defined
items and 99.25% in extracting statements. The fastest tool in extraction is WDF, while the most flexible tool is WDSub. During
the experiments, multiple subset use cases have been defined and the extracted subsets have been analyzed, obtaining valuable
information about the variety and quality of Wikidata, which would otherwise not be possible through the public Wikidata
SPARQL endpoint.

Keywords: Knowledge Graph, Wikidata, Subsetting, Big Data, Accuracy, Performance

*These authors contributed equally to this work and share first authorship
**Corresponding author. E-mail: sh200@hw.ac.uk.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:sh200@hw.ac.uk
mailto:A.J.G.Gray@hw.ac.uk
mailto:labra@uniovi.es
mailto:andra@micel.io
mailto:a.ammar@maastrichtuniversity.nl
mailto:denise.slenter@maastrichtuniversity.nl
mailto:egon.willighagen@maastrichtuniversity.nl
mailto:agonzalez@scripps.edu
mailto:bysabahulhasan@gmail.com
mailto:f.j.mcneill@ed.ac.uk
mailto:sh200@hw.ac.uk

2 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. Introduction

Wikidata [1] is a collaborative and open knowledge graph founded by the Wikimedia Foundation on 29 October
2012. The initial purpose of Wikidata is to provide reliable structured data to feed other Wikimedia projects such
as Wikipedia. Wikidata contains 101,449,901 data items and more than 1.4 billion statements, as of 19 January
2023. Wikidata and its RDF and JSON dumps are licensed under Creative Commons Zero v1.0 1, making it publicly
available for all commercial or non-commercial use cases. It can be queried directly over a free SPARQL endpoint2,
a free query service GUI3 and is interlinked with the other Linked Open Data on the web [1].

Wikidata is a key player in Linked Open Data and provides a massive amount of linked information about items
in a wide range of topics. The topical coverage of Wikidata spans from scientific research and historical events to
cultural heritage and everyday facts. With its ability to integrate data from multiple sources, Wikidata serves as a
powerful tool for knowledge management and data integration. Its structured format and rich linking capabilities
make it an ideal resource for machine learning and artificial intelligence applications. Although there is this massive
data, most research and industrial use cases need a subset of items, statements, and metadata. This paper discusses
the new research problem of Wikidata subsets, their definition, the significance of their extraction, and the methods
to retrieve them.

1.1. The significance of Subsets

Having subsets of KGs have many benefits. The first benefit of subsetting is avoiding size issues. General purpose
KGs such as Wikidata are valuable sources of facts about various topics. On the Linked Data Web, they serve as
a common linking point between inter-, and sometimes intra-, domain KGs4. However, their increasing size makes
them costly and slow to use locally. Additionally, the large volume of data in Wikidata increases the time required
to run complex queries. This often restricts the types of queries that can be posed over the public endpoint since it
has a strict 60-second limit on the execution time of queries. Any query that takes more time to execute than this
will timeout5.

Downloading and using a local version of Wikidata is one way of circumventing the timeout limit. However,
it is not a cheap option due to the size of the data. Wikidata JSON dump of 14 December 2022 is 112GB in a
compressed format. A suggested hardware required to have a personal copy of Wikidata includes 16 vCPUs, 128GB
memory, and 800GB of raided SSD space6. A Google Cloud computation engine with these specifications would
cost more than $527 per month7. Although the costs for infrastructure are relatively affordable, considering the value
and potential use cases of having a local copy of Wikidata, there are many instances where only a small portion
of Wikidata is relevant. In such cases, hosting a complete copy can be considered excessive and unnecessary. This
makes it difficult to secure the necessary funds for such an infrastructure.

Additionally, out of this 112GB of data, one might need no more than 1GB on a specific topic. There are several
use case scenarios where users do not need access to all topics in a massive general-purpose KG. A small and
complete enough subset can be more suitable for many purposes. For example, a subset of all information about
genes, proteins, drugs, and diseases can be used in pharmaceutical research [2]. Even in general-purpose use cases
covering broad domains, small subsets can help. For example, in an open-domain Question Answering interface,
the system may detect the domain category of a given question first, then refer to the smaller subsets in the detected
domain to retrieve the facts, speeding up the query time. With a small subset, inference strategies can be applied to
the data and completed in a reasonable time. Subsets can also be published along with papers, which provides better
reproducibility of experiments [3]. Small subsets are also easier to archive and are more likely to be reused [4].

1https://creativecommons.org/publicdomain/zero/1.0/ - accessed 19 February 2023
2https://query.wikidata.org/bigdata/namespace/wdq/sparql?query={SPARQL} - accessed 19 January 2023
3https://query.wikidata.org/ - accessed 19 January 2023
4https://lod-cloud.net/ accessed 20 February 2022
5https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/
6See this post: https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
7Estimated by Google Cloud Pricing Calculator: https://cloud.google.com/products/calculator/#id=32eca290-7628-48af-9988-20508f4bc861

accessed 11 February 2023

https://creativecommons.org/publicdomain/zero/1.0/
https://query.wikidata.org/bigdata/namespace/wdq/sparql?query={SPARQL}
https://query.wikidata.org/
https://lod-cloud.net/
https://en.wikibooks.org/wiki/SPARQL/Wikidata_Query_Service/
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://cloud.google.com/products/calculator/##id=32eca290-7628-48af-9988-20508f4bc861

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Various topical archives can be created from Wikidata, which gives better access to the data, while multiple time
snapshots can be built from this data. Subsets enable complex querying on cheap servers or personal computers —
reducing the overall cost — and making the experiments reproducible.

Establishing comparison platforms is the other benefit of subsetting. Consider the aim to examine a feature unique
to Wikidata (e.g., referencing). As there is no comparable KG, different subsets of Wikidata in multiple topics can
be used as comparison parties. Also, random subsets of Wikidata can be regarded as a random samples of Wikidata
items and statements. Subsetting also allows us to see whether there is uniform coverage of references across all of
Wikidata and identify variations between different contributor communities.

Another advantage of subsets is populating new topic-oriented KGs. An example of Dan Brickley can be taken
in this context: "Subsetting KGs is like cutting a plant and placing it in a new pot. So it can grow and become a
new topic-specific KG ..."8. For example, in the case of extracting a life science subset of Wikidata, the extracted
subset can be considered a life science knowledge graph, which can subsequently be enriched with additional triples,
creating a new Life Science KG based on the Wikidata data model and enriching its contents with other contents.

1.2. What Is a Subset?

In its broadest sense, subsetting refers to extracting the relevant parts from a KG. Considering a KG (regardless
of semantics) as a collection of nodes, edges and an associated ontology, a subset can be an arbitrary number of
combinations of these three. Thus, in a broad definition, any query graph pattern can be considered a subset, but
subsets can include more general cases. Including repetitive graph algorithms such as shortest paths and connectivity
[5]. To the best of our knowledge, there is no precise formal definition for submitting accepted by the community [6].

The input of the subsetting process is generally a KG. Over the KG, filters are applied to separate the desired
parts of the graph. The output of this process can be in the form of a graph (directed edge-labelled or property
graph) in various formats, tables, or JSON. The most straightforward way to subset an RDF KG is to use SPARQL
CONSTRUCT queries on the endpoints of a triplestore. This method is suitable for simple and small subsets but
has limitations for large and complex subsets. SPARQL endpoints are usually slow and have run-time restrictions.
Moreover, recursive data models are not supported in standard SPARQL implementations [7].

1.3. Objectives and Contribution

This research aims to collect all available Wikidata subsetting approaches and tools, test their capabilities, and
analyse their advantages and disadvantages. The scope is individual, independent, local and arbitrary subsetting,
i.e., use cases where users can subset Wikidata locally over any subsetting filters they desire without relying on
publicly available servers or datasets. The main reason is that public servers usually apply limitations on the type
and run-time of applications. The contributions of this paper are:

1. A survey of emerging practical knowledge graph subsetting tools (Section 3);
2. Performance analysis of practical Wikidata subsetting tools (Section 4);
3. Discussion of the flexibility of practical subsetting tools through tangible Life Science subsetting use cases

(Section 5).

This paper first reviews the Wikidata RDF model and the terminology used in the paper in Section 2. In Section 3,
a survey of the available methods for subsetting will be presented in detail. In Section 4, the apper investigates the
performance (run-time and extraction statistics) and accuracy (what has been extracted and excluded) of the state-
of-the-art subsetting tools. In Section 5, a discussion of the flexibility of the practical tools will be given by going
through three Life Science subsetting use cases. Finally, the paper will be concluded in Section 6.

8BioHackathon Europe 2021, Project 21: Handling Knowledge Graphs Subsets (group discussions). Notes: https://seyedahbr.github.io/Blog/
Biohackathon21.html - accessed 12 Feburary 2023

https://seyedahbr.github.io/Blog/Biohackathon21.html
https://seyedahbr.github.io/Blog/Biohackathon21.html

4 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Wikidata RDF Model

The fundamental components of Wikidata are items which are concepts or entities from the real world, such as
humans, chemicals, articles, etc. and properties, which are relationships between two items or between items and
values. Items and properties have internal identifiers: item IDs start with a ‘Q’, and property IDs with a ‘P’ character,
followed by an incremental number in their category. Relationships between entities create claims: a property that
explains a fact about an item. Claims can be enriched by adding qualifiers to provide contextual information and/or
references, to provide provenance and form statements. In other words, statements are those claims having some
additional contextual metadata.

Wikidata is powered by the Wikibase9 software collection which provides applications and libraries for creating,
managing and sharing structured data, created by Wikimedia Foundation and is freely available as a Docker image10.
Wikibase provides a syntax highlighting SPARQL query interface that supports federated queries, a Javascript-based
GUI for populating data, and a Blazegraph triplestore [8] to store and manage RDF data. Wikibase also provides the
EntitySchema extension that supports Shape Expressions, which as will be described later, has a role in subsetting.
Wikibase has several other software components that are needed to create a knowledge base similar to Wikidata
data model. Data can be exported in many formats like JSON, RDF/XML, OR N3, and it defines its data model
which is used by Wikidata. In addition to Wikidata, there are other open KGs hosted in Wikibase instances, e.g., the
Rhizome [9], FactGRID [10], and EU Knowledge Graph [11].

Wikidata uses reification based on intermediate nodes to store contextual metadata, known as qualifiers, and
provenance metadata, known as references, for statements. As an example, Figure 1 shows the representation for the
speed limit (P3086) statement in Germany (Q183). The top of the image shows the representation of this statement
in the Wikidata GUI. The bottom of the image shows the RDF graph of the information. The speed limit statement
value can be reached directly by the wdt:P3086. To access qualifiers, references, and the rank of the statement,
the intermediate ‘Statement Node’ must be used, represented with a wds: prefix. This intermediate node can be
accessed by the p: combined with the same statement property identifier. From the statement node, qualifiers are
accessible by the pq:, references by the prov:wasDerivedFrom, ranks by the wikibase:rank, the default
value-unit with psv:, and the conversion to the default URI mapping using psn:. Note that in Wikidata, values
can be simple literals (i.e. text or values), IRIs, or can be complex data types called a full value, storing more
metadata about a literal value such as units, ranges, precision, and the calendar used [12]. Another important notion
in Wikidata is the rank of statements. In Wikidata, statements can have normal, preferred, or deprecated ranks.
Deprecated rank refers to a property value that is not considered correct (based on the statement’s context, such
as qualifiers or references). In Wikidata, “statements that have the best non-deprecated rank for given property”
are called Truthy statements [12]. In other words, a deprecated statement can never be a truthy statement. Items,
statements, contextual metadata, provenance metadata, and all other parts of this reification can be used to define a
subset.

3. Subsetting State of the Art

Subsetting is a recent research problem in KGs. To the best of our knowledge, the early demand for creating a
biomedical subset of Wikidata was in 2017 [13], the subsetting discussions in the Wikidata biomedical commu-
nity were concretely started at the 12th international SWAT4HCLS conference in 2019 by Andra Waagmeester et
al. [14] and then followed in Project 3511 of ELIXIR BioHackathon-Europe 2020 [15], Project 2112 of ELIXIR
BioHackathon-Europe 2021, and Project 1113 of ELIXIR BioHackathon-Europe 2022 [16].

9https://wikiba.se/ - accessed 12 December 2022
10https://hub.docker.com/r/wikibase/wikibase - accessed 15 December 2022
11https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35 - accessed 20 December 2022
12https://github.com/elixir-europe/BioHackathon-projects-2021/tree/main/projects/21 - accessed 20 December 2022
13https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/11 - accessed 20 December 2022

https://wikiba.se/
https://hub.docker.com/r/wikibase/wikibase
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
https://github.com/elixir-europe/BioHackathon-projects-2021/tree/main/projects/21
https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/11

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Top: One of the speed limit (P3086) statements of Germany (Q183) on Wikidata GUI (retrieved on 14 December 2022). Bottom: various
elements that can be extracted from Wikidata from Germany (Q183).

3.1. General Purpose Subsetting Approaches

Matsumoto et al. [17] have introduced the Graph-to-Graph Mapping Language (G2GML) that aims to convert
RDF graphs to property graphs. G2G Mapper14 is a tool that receives a mapping configuration file written in G2GML
and an RDF turtle file (or a SPARQL endpoint) as input and creates a property graph from the RDF data specified by
the input mapping. Although the purpose of the G2GML language was to generate property graphs from RDF graphs
to take advantage of the property graphs, it can be used as a subsetting tool; however, the output will be a property
graph. For subsetting, an RDF output is preferable as it is standardized, and evaluating them is straightforward.
Another limitation is that one needs to completely define the Wikidata ontological structure and data model in the
form of property graphs, especially references. In that way, a mistake or forgotten property can affect the future
evaluation of the subset.

Mimouni et al. [18, 19] use a concept called the Context Graph to generate a smaller dataset than the original
massive KGs such as DBPedia and Wikidata, which enables them to test their knowledge base completion method
on this dataset instead of the entire KG. The context graph construction algorithm starts with an initial set of seed
nodes, and in each round, adjacent nodes of the seed set (that are not in a forbidden set) and their relations are
added to the seed nodes. This operation continues for several rounds called the radius. The context graph production
process seems to be suitable for generating random subsets; however, it is not an integrated method for generating

14GitHub: https://github.com/g2glab/g2g - accessed 20 December 2022

https://github.com/g2glab/g2g

6 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

subsets around a topic. To produce subsets around a topic, it is necessary to identify the member entities of a
particular topic. However, there is no such concept in the context graph. One has to extract all the nodes related to
a topic from the beginning and put them in the initial seed set. On the other hand, extracting node neighbours to a
radius ⩾ 2 may enter information that is not relevant to the topic. Another limitation is that this approach is not
able to extract Wikidata contextual metadata, especially references.

Henselmann and Harth [20] developed an algorithm for creating on-demand subsets around a given topic from
Wikidata, starting from a seed set of nodes and performing multiple SPARQL queries to obtain the desired triples.
Their approach can be used to create subsets around topics. However, the authors do not provide use cases or
evaluation of their algorithm, thus it is more a theoretical approach than a practical tool. The proposed algorithm
and its SPARQL queries are also not compatible with references. Aghaei et al. [21] proposed an approach to create
an on-demand sub-graph of a KG for Question Answering (QA), which is a common approach in heuristic-based
QA over KGs [21]. In this approach, a set of entities is first fetched from the question. A neighbour graph query
pattern is then used to create a knowledge sub-graph of those nodes’ neighbours and their relationships from the
KG. Similar to the context graph approach, the neighbour nodes are extracted up to a specific distance (hop). The
limitation of this subsetting approach is that those are specific-purpose methods designed to answer natural language
questions. These methods create the subset at the moment of answering the question, do not care about extracting
the contextual metadata, and do not return the constructed subset as a portable output.

Shape Expressions (ShEx) [22] is a structural schema language allowing validation, traversal and transformation
of RDF graphs? There are several ShEx validator implementations, e.g., shex.js [23] and PyShex [24], which receive
a ShEx schema as the input and validate an RDF graph over it. These validators can keep track of the triples traversed
during validation and return the matched triples out (called ‘slurping’), which can be used to define data schemata
which could result in extracting a subset. ShEx is a language for validating RDF data, and its evaluators are for
checking the shape of the graph against a schema, not for extracting. Although the language has the most flexible
way to define subsets, its evaluators’ slurping capabilities are limited as they can not handle the massive size of
Wikidata.

3.2. Practical Tools

WDumper15 [25] is a third-party tool for creating custom and partial RDF dumps of Wikidata suggested at the
Wikidata database download page [26]. The WDumper backend uses the Wikidata Toolkit (WDTK) Java library
to apply filters on the Wikidata entities and statements, based on a specified configuration that is created by its
Python frontend. This tool needs a complete JSON dump of Wikidata and creates an N-Triple file as output based
on filters defined in the configuration file. This tool can be used as a topical subset creator; however, it cannot be
said that WDumper can build a complete topical subset. This is due to the limitations of this tool, e.g., not sup-
porting extracting the subclasses and the lack of making connections between separate filters. With a few changes
and using a Python random generator script16, WDumper can be extended to extract random subsets from Wiki-
data of any size [27]. Beghaeiraveri et al. [6] introduced the concept of Topical Subsetting over Wikidata using
WDumper, extracting four topical Wikidata subsets. Beghaeiraveri et al. [28] used WDumper to extract six Wikidata
topical subsets corresponding to six Wikidata Wikiprojects: Gene Wiki, Taxonomy, Astronomy, Music, Law, and
Ships. Topical and random subsets of Wikidata are being used as the comparison platform for evaluating Wikidata
references [29].

The flexibility of the ShEx language motivated researchers to develop a specific subsetting tool for Wikidata based
on this language. WDSub [30] is a subsetting tool implemented in Scala that accepts ShEx schemata and extracts a
subset corresponding to the defined schema from a local Wikidata JSON dump. The extractor part of the WDSub
is similar to WDumper, i.e., the WDTK java library. In addition to traditional ShEx schemata in ShExC format,
WDSub has its own subsetting language, WDShEx [31], which is a shape expression language based on ShEx and
optimized for Wikidata RDF data model. WDSub can produce both RDF and Wikibase-like JSON outputs.

15Demo: https://wdumps.toolforge.org/ - accessed 20 December 2022
16https://github.com/seyedahbr/wdumper/blob/12f0ddf/extensions/create_random_spec.py - accessed 10 June 2023

https://wdumps.toolforge.org/
https://github.com/seyedahbr/wdumper/blob/12f0ddf/extensions/create_random_spec.py

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
The summary of subsetting tools capabilities. WIP stands for Work In Progress.

Tool
Output
Format

Input
Format

Subset
Definition
Language

Average
Infrastructure
Requirements

Requires
Full

Dump

Live
Subsetting

Supports
Massive

Data

Supports
Qualifiers

Supports
References

Graph
Traversal

Further
Output

Transforms
Analytics

ShEx
+
Slurp

RDF
RDF

(SPARQL)
ShEx PC - + - + + + - -

WDumper
RDF

(N-Triple)
Wikibase

JSON
JSON

spec file
PC - - + + + - - -

WDSub
Wikibase

JSON/RDF
Wikibase

JSON
ShEx/

WShEx
PC + - + + + - - +

SparkWDSub
Wikibase

JSON
Wikibase

JSON
ShEx

Spark
Cluster

+ - + WIP WIP + - -

WDF NDJSON
Wikibase

JSON

Command
line

filters
PC + - + + + - - -

KGTK TSV/RDF
Wikibase

JSON/RDF
Kypher PC + - + + WIP + + +

SPARQL
Construct
Queries

RDF
RDF

(SPARQL)
SPARQL PC - + - + + - + -

Knowledge Graph Toolkit (KGTK) [32, 33] is a collection of libraries and programs to manipulate KGs. KGTK
is designed to make working with knowledge graphs easier, both for populating new KGs or developing applications
on top of KGs. It is implemented in Python, including a command-line tool for multiple utilities such as importing
and exporting Knowledge from various formats (e.g., RDF, CSV, JSON), merging and combining KGs data, creating
KGs from unstructured sources, querying and analyzing KG data, etc. The fundamental operations in KGTK are
importing and querying. KGTK imports massive KGs and converts the data to TSV files, and uses a Cypher-inspired
language (called Kypher) to query from these TSV files. In the context of Wikidata, KGTK has been deployed in
multiple quality and population-related studies (such as [34, 35]). However, its main limitation in Wikibase-driven
datasets is not to support indexing of referencing metadata.

Wikibase Dump Filter (WDF) [36] is a Node.js tool to filter and process the JSON data dumps Wikibase, devel-
oped and maintained by the Wikimedia Foundation. Similar to WDumper, WDF is an item-based filtering tool, i.e.,
it applies different filters on items, claims, qualifiers and other Wikibase JSON dump components to create a new
dump of desired items of Wikidata. It can also be used to filter revision dumps of Wikibase-driven datasets. WDF
can transform the filtered data into CSV, as well as NDJSON17.

Table 1 shows the summary of tool capabilities. The first column lists the name of the tool. The second column
lists the output format the tool generates. The third column shows the required data input format for the tool. The
fourth column lists the language/format used to define a subset. The fifth column reflects the average hardware and
software infrastructure required for using the tool to extract a subset. The sixth column reflects whether or not a
full Wikidata dump download is required for subsetting. The seventh column indicates whether or not the tool runs
on live data. The eighth column reflects whether or not the tool is scalable for large subsets or extract subsets of
Massive KG. The ninth column indicates whether or not the tool supports extracting qualifiers. The tenth column
indicates whether or not the tool supports extracting references. The eleventh column indicates whether or not the
tool provides support for graph traversal (i.e. exploring paths between nodes, including cycles to define a subset).
The twelfth column indicates whether or not it is possible to use the tool to perform additional data transformations
(e.g., RDF format conversion) without third-party tools once the subset is extracted. The thirteenth column reflects
whether the tool provides analytics about the content of the extracted subset, e.g., the number of triples and items.
Note that approaches such as the Context Graph or Aghaei et al. are not listed as those are one-purpose and cannot
be reused for arbitrary subsetting.

The table shows that no tool provides all positive functionalities. Most of the tools can be run on PCs except
SparkWDSub, which is designed for scalability purposes. WDumper is considered a tool that requires no access

17http://ndjson.org/ - NDJSON is a line-separated file in which every line is a valid JSON value. In WDF output, each line is a JSON blob of
Wikidata JSON dump representing one item.

http://ndjson.org/

8 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Details of the 3 January 2022 Wikidata dump used as the data input for experiments.

Dump Date Dump Format Compressed Size Total Items Total Statements

3 Jan 2022 JSON.gz 102GB 95,900,304 1,353,626,249

to the local dump as it is available from an online demo which uses the latest Wikidata JSON dump. None of the
practical tools is capable of live subsetting. Instead, they can deal with massive dumps, where ShEx slurping and
SPARQL queries fail. Supporting graph traversal is also a challenging feature available in KGTK and SparkWDSub
amongst the practical tools (however, SparkWDSub is in the early development stages).

The SPARQL CONSTRUCT queries can be considered the most available approach for subsetting Wikidata and
other KGs, while regarding independent and local subsetting, they have limitations that exclude them from being
a practical approach. The first limitation is defining a subset with CONSTRUCT queries is time-consuming, as the
end-user needs to write the entire graph shape they want to extract. For example, if the end-user defines a subset
of Genes, (in addition to the select filters) they should explicitly define what statements, labels, qualifiers, and
references should be in the output. Once the scope of the subset gets complicated, specifying the connectivity of the
output graph is even more challenging. Such detailed graph patterns can also be outdated very fast as the RDF data
is schema-independent; therefore, users should constantly review and modify their queries. Another limitation is
the query endpoint. Public endpoints usually apply concrete run-time and query-type limitations, which reduces the
capabilities of CONSTRUCT queries (for example, users can not extract rdf:type triples or write heavy queries
with more classes included), and raising a local endpoint (on a Blazegraph instance or other triplestores) returns
us to the cost limitations again. Another limitation to use SPARQL CONSTRUCT queries to describe the subsets is
the lack of support for recursion so it would not be able to handle the definition of subsets with cyclic data models.
Overall, while SPARQL CONSTRUCT queries are a tangible approach for small subsetting use cases, we don’t
consider them a practical solution for subsetting.

4. Performance and Accuracy Evaluation

This section is dedicated to an evaluation experiment on the performance and accuracy of the four practical tools:
WDSub, WDumper, WDF, and KGTK. Considering the size of Wikidata, the subsetting tools need to extract data
in a feasible time. A fast extraction can reduce processing costs and pave the way for regular subset updates and live
subset generation. Subsetting tools should also create accurate outputs. Accuracy in this context means the output
of a subsetting tool should include all desired statements and exclude any other data. To assess the performance
and the accuracy of the practical Wikidata subsetting tools, a unified test on each subsetting tool is performed and
the extraction time and the content of the output is reported. The scripts, schemas, and SPARQL queries of this
experiment can be found in the GitHub repository of the paper [37]. The extracted subsets, along with can be found
on Zenodo [38].

4.1. Experimental Methodology

In addition to the size of Wikidata, there are other factors contributing to the speed of subset extraction: (i) the
number and complexity of filters applied to the input, (ii) the type of the output data (RDF, JSON, etc.), and (iii)
the internal operations of the tool. By keeping the input dump and the desired filters fixed, the internal operations
run-time is calculated.

4.1.1. Input Dump
The Wikidata JSON dump of 3 January 2022 [39] is used as the input to the four subsetting tools. Table 2 shows

the details of the input dump. The input dump was downloaded from the Wikidata Database Download page [40].

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.1.2. Subsetting Filters (Performance Test)
The experiment considers a life-science subset of Wikidata as the test use case with the following conditions.

– The subset includes all and only ‘instances of(P31)’ gene (Q7187), protein (Q8054), chemical compound
(Q11173), and disease (Q12136).

– The subset does not include the instances of subclasses. For example, if the tools extract the instances of gene
(Q7187) class, instances of the operon (Q139677) class should not appear in the output.

– The subset includes all statements about the items but does not require to include qualifiers or references.

chemical compound (Q11173), disease (Q12136), gene (Q7187), and protein (Q8054) are the main Gene Wiki
WikiProject classes. Each of these classes includes several subclasses in Wikidata that have many instances. For
example, the gene (Q7187) class has 1,004,350 subclasses18 of which operon (Q139677) is one. The condition of
including no subclass examines the sensitivity in detecting the defined class only. Since KGTK cannot index and
extract references, no filters are applied to the references to keep the evaluation equal.

4.1.3. Subsets Validation (Accuracy Test)
To measure the accuracy, after finishing the extraction and recording the execution time and the raw volume of

the output, we perform the following set of queries on the input (Wikidata dump) and the output of each tool:

Condition 1: The total number of items (Q-IDs) that are instances of chemical compound (Q11173), disease
(Q12136), gene (Q7187), and protein (Q8054) classes.
Condition 2: The total number of statements of the items that are instances of chemical compound (Q11173),
disease (Q12136), gene (Q7187), and protein (Q8054) classes.
Condition 3: The total number of items (Q-IDs) that are instances of operon (Q139677) and acid (Q11158).

Comparing the results of Condition 1 and Condition 2 in the input dump and the output of each tool is a measure
of how well the tools extract what they are supposed to fetch. Condition 3 checks the existence of two subclass
instances (Operon as a subclass of Gene, and Acid as a subclass of Chemical Compound), aiming to avoid including
false positives. The Operon and Acid are arbitrary subclasses; however, operons have an extra semantic relation to
genes (an operon is a functioning unit of DNA containing a cluster of genes) and proteins, while acids do not have
such extra relation to chemical compounds. In that way, the two subclassing relations can be further compared and
the misconfiguration of the tools can be found.

4.1.4. Output Format
In this experiment, the output type of WDumper and WDSub is RDF. WDumper creates GZip NTriple files.

WDSub creates GZip Turtle files. WDF produces NDJSON files. The output type of KGTK is a TSV file. There are
also differences in the size of different RDF formats. The type and the format of the outputs is reported; however,
the difference should be kept in mind when comparing the results. The calculated time includes serialization to RDF
and the time required to write to disk.

4.2. Experimental Setup

4.2.1. Host Machine
The experiments were performed on a multi-core server powered by 2 AMD EPYC 7302 CPUs (16 cores and 32

threads per CPU), 320GB of memory, and 2 hard disks: a 256GB SSD that runs the operating system (CentOS 7
kernel 3.10.0-1160.81.1.el7.x86_64 amd64) and a 6TB HDD that is used for the extraction steps.

4.2.2. Software Versions
Table 3 shows the versions of subsetting tools and software used for compiling. All versions were available on 12

November 2022. WDumper has no released version; therefore, the used commit ID is mentioned. All tools except
WDF have Docker containers; however, all mentioned versions are cloned and compiled with no need to have root
permissions. For KGTK, the repository-recommended binary package in Conda is installed, using pip. To the best
of our knowledge, WDSub and KGTK are being upgraded regularly.

18https://w.wiki/69Bt - queried 24 December 2022

https://w.wiki/69Bt

10 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Software versions and compiler/interpreter used.

Tool Version Compilers/Interpreters details License

WDSub version 0.0.28 sbt version 1.6.2, openjdk version “11" MIT

WDumper commit dc325fc gradle 7.0.2, openjdk version “11" MIT

WDF version 5.0.7 npm 8.19.2 MIT

KGTK version 1.4.3 conda 22.9.0 MIT

4.2.3. Experimental Run
A Python script19 runs each tool three times separately from the moment of starting with the raw input dump to

the moment it saves the output on disk. In this way, the time required for any indexing and pre-processing of the
dump (if any), as well as the time of writing the output, is included in the extraction time, which is in line with
the local and independent subsetting scope. Since the host machine is assumed to run other tasks at the same time,
the extraction is repeated three times and the average and the standard deviation of the three runs are presented.
While WDF and KGTK accept the filtering embedded in the command line, WDumper accepts a JSON specification
file20 and WDSub accepts a ShEx schema21. RDF outputs of WDumper and WDSub were imported in Blazegraph
triplestore. In all cases, the recommended configurations and command line arguments which are mentioned in the
online documentation of the tools are deployed. Note that amongst the four tools, KGTK supports multithreading.
However, KGTK focuses on handling KGs on laptop computers [41]; therefore, its recommended settings use only
six threads22. Then a set of SPARQL queries23 has been performed to count the instances and statements in RDF
outputs. For KGTK which produces TSV outputs, a Python script (using pandas package) has been used 24. For
counting the number of instances and statements in the WDF output and the input dump (which are JSON files),
a parallelized Python script25 with efficient time consumption has been used. Note that while each Wikidata JSON
dump has an RDF pair dump, these two different serializations are not identical [42]. Therefore the JSON dump is
queried directly using the Python parallel program.

4.3. Performance Test Results

Table 4 shows the output detail, results of extraction time, and the total number of distinct items and statements
in the output of each tool. The output of WDSub and WDumper is significantly smaller due to compression. The
KGTK output is not compressed; however, it is still as small as WDSub and WDumper. It is because other tools
extract the entire metadata of the matched item, including labels, descriptions, qualifiers, etc., while KGTK extracts
the statement triples only. In its TSV output, KGTK keeps the Q-IDs only and omits any prefixes, which results
in light and fast-writing outputs. Note that KGTK can be set to extract other metadata; however, performing this
requires additional conditions and filters, which are not necessary for the experimental scenario (see Section 4.1.2)
and increases its extraction time. As well, WDumper, WDF, and WDSub can be set not to extract metadata; however,
applying such filters enforces unnecessary overhead in their extraction time.

The extraction times show that WDF is the fastest tool. Part of that is because JavaScript is efficient in reading
JSON files. The WDF filters are also basic, and parsing the conditions can be done straightforwardly. KGTK is the

19https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a517842/performance-experiments/tool_runner.py - accessed 10
June 2023

20https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_
chemicals.json - accessed 10 June 2023

21https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_
chemicals.shex - accessed 10 June 2023

22It is worth reporting that KGTK v1.5.3 over 32 threads and avoiding deprecated statements has been run and the tool was unsuccessful to
return an output after three days of processing.

23https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/tree/1eab3d9/performance-experiments/sparql - accessed 10 June 2023
24https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/dc2869c/performance-experiments/count_instances_tsv.py - ac-

cessed 10 June 2023
25https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/d63a3b1/performance-experiments/count_instances_json_iter.py -

accessed 4 June 2023

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a517842/performance-experiments/tool_runner.py
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_chemicals.json
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/a80a867/performance-experiments/gene_protein_disease_chemicals.json
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_chemicals.shex
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/performance-experiments/gene_protein_disease_chemicals.shex
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/tree/1eab3d9/performance-experiments/sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/dc2869c/performance-experiments/count_instances_tsv.py
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/d63a3b1/performance-experiments/count_instances_json_iter.py

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
The results of running the four practical tools: size and type of the output, the average (Avg.) and standard deviation (STD) of the extraction
time, the number of items and the number of statements.

Tool
Output

Type
Output

Size (GB)

Extraction
Time (sec) Items Statements

Avg. STD

WDSub ttl.gz 2.7 43,060 126 3,434,509 38,372,871

WDumper nt.gz 3.1 23,427 97 3,434,538 38,373,706

WDF ndjson 36 13,876 52 3,434,538 38,373,706

KGTK tsv 3.6 17,148 1,020 3,434,506 38,366,611

second fast tool which benefits from multithreading, providing a high variance of extraction time. KGTK extraction
includes two stages: importing Wikidata and the query itself. In these experiments, 40% of the KGTK run-time was
spent importing the Wikidata JSON dump and converting it into three TSV files corresponding to nodes, edges, and
qualifiers. The rest 60% of the run-time was spent on the query. KGTK creates a graph cache in SQLite format from
the edges TSV file once the first query is performed, which significantly speeds up subsequent queries to at most
one hour. Thus, most of the query run-time is spent creating the graph cache for the first time. With such a feature,
KGTK can be used to compute the graph cache once. Then the graph cache can be shared by Wikimedia or third-
party associates for queries. However, in the context of this investigation, since the paper considers autonomous
and arbitrary subsetting (and not publicly available servers), the graph cache processing in the run-time is included.
Although WDF and WDumper traverse the JSON dump similarly line by line, and WDumper is a compiled tool,
WDumper is slower. A part of this slowness is because WDumper serializes the matched JSON blobs to RDF. Also,
WDumper can accept more complex filters that create a level of overhead in extraction (regardless of having a
simple specification input). The same is true for WDSub. The RDF serializer in WDumper and WDSub is the same;
however, the WDSub filtering system (based on ShEx) can parse quite complex filters at the SPARQL level, which
creates a massive overhead. WDumper also has a better level of multithreading than WDSub.

Comparing the number of extracted items and statements shows that KGTK has the least number. The reason
behind the higher ratio of missed items and statements in KGTK output is not clear, but it cane be hypothesized to
be due to the greater complexity of indexing and query procedures in KGTK compared to other tools, a higher like-
lihood exists for skipping more blobs during intermediate steps due to their un-parsability. The number of extracted
items and statements in WDF and WDumper is identical, although this identicality is coincidental as these numbers
are the distinct add-up of four different classes. The disaggregated statistics, as discussed in Section 4.4, show that
these tools extract a different number of instances in each class.

4.4. Accuracy Test Results

Table 5 shows the result of accuracy test queries on the input dump and each tool separately. In the Condition 1
column, the number of instances of each class can be seen. Compared to the input dump, all tools missed extracting
some Q-IDs except WDF. The WDF filter matching process is the simplest among the available tools. It involves
scanning the input dump line by line, with each line containing a JSON blob corresponding to a Wikidata item. The
filters provided are then applied to the values within each JSON blob, and if a successful match is found, the entire
blob is returned. Moreover, the number of extracted statements matches the input dump, highlighting the exceptional
accuracy of WDF compared to other tools. The ratio of the missing items in other tools is less than 0.05%, and the
ratio of missing statements is less than 0.75%. From 1,196,532 gene instances in the input dump, WDSub did not
extract 44, and WDumper and KGTK did not extract 29 gene instances. Although the rate is acceptable, a 100%
accuracy is expected for this task. Reviewing the gene instances items that are present in the input dump but are not

12 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Accuracy test results of the four tools.

Condition 1 Condition 2 Condition 3
Class Items Statements Class Items

Input
Dump

Gene 1,196,532 15,993,915
Operon 731

Protein 987,636 11,365,759
Chemical Compound 1,244,881 10,942,239

Acid 22
Disease 5,513 72,480

WDSub

Gene 1,196,488 15,993,260
Operon 0

Protein 987,614 11,365,230
Chemical Compound 1,244,859 10,941,100

Acid 7
Disease 5,511 72,416

WDumper

Gene 1,196,503 15,993,730
Operon 0

Protein 987,636 11,365,759
Chemical Compound 1,244,874 10,941,562

Acid 7
Disease 5,512 72,477

WDF

Gene 1,196,532 15,993,915
Operon 0

Protein 987,636 11,365,759
Chemical Compound 1,244,881 10,942,239

Acid 7
Disease 5,513 72,480

KGTK

Gene 1,196,503 15,988,146
Operon 0

Protein 987,636 11,366,235
Chemical Compound 1,244,879 10,941,671

Acid 7
Disease 5,512 71,933

in the outputs of tools shows that the 29 missed items in KGTK26 and WDumper27 are identical. Plus additional 15
instances, those 29 items are missed in WDSub28 too.

Analysis of the JSON blobs for some missed instances, such as xmas-1 (Q29718370), NGB (Q418553), AH10.3
(Q29685684), and EGAP798.1 (Q29678017) revealed no issue concerning the instance of (P31) claims which serve
as the basis for filters. However, we noticed some malformed characters, such as <200d> and \\ in the Unicode
label values29. Two other missed instances have a _ character in their Bangala label values30. The effect of bad char-
acters has been already reported in the context of Wikidata RDF dumps [6, §4.4]. The fact that WDF did not miss
any items or statements leads us to assume that other tools may struggle with parsing those certain values within
different parts of the JSON blobs, such as names, descriptions, or date-time values, resulting in the skipping of the
entire blob. All three tools involve intermediate operations that are potentially sensitive to datatype parsing. In the
case of WDumper and WDSub, the RDF serialization step may cause unparsing, while KGTK utilizes a ShEx en-
gine, which can introduce further sensitivity. Moreover, KGTK’s use of the graph cache is considered a potentially
sensitive stage, especially since missed items appear in the output of the importing step (the initial “nodefile.tsv")
but are not extracted during the query step. Malformed characters of this nature can arise either from internal mis-
functioning of the Wikibase software or through direct entry by contributors. Another observation is that 19 instance
of (P31) claims for 15 Q-IDs were duplicated in the KGTK output31, i.e., the entire <item,P31,Q7187> was

26List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_kgtk_unique_items.txt?download=1 - accessed 10 June
2023

27List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_wdumper_unique_items.txt?download=1 - accessed 10
June 2023

28List of missed gene instance Q-IDs: https://zenodo.org/record/8015611/files/dump_wdsub_unique_items.txt?download=1 - accessed 10
June 2023

29See Line 111 of file ‘item-Q418553-found.json’ in [38] and Line 40 of file ‘item-Q29718370-found.json’ in [38] - accessed 8 Jun 2023
30See Line 11 of file ‘item-Q29685684-found.json’ in [38] and Line 11 of file ‘item-Q29718370-found.json’ in [38] - accessed 8 Jun 2023
31List of duplicated gene instance Q-IDs: https://zenodo.org/record/8015611/files/kgtk_repetitive_items.txt?download=1 - accessed 10 June

2023

https://zenodo.org/record/8015611/files/dump_kgtk_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/dump_wdumper_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/dump_wdsub_unique_items.txt?download=1
https://zenodo.org/record/8015611/files/kgtk_repetitive_items.txt?download=1

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

repeated. The reason for this phenomenon is unknown; however, checking one of the instances, NGB (Q418553)32

shows that the item is an instance of chemical compound (Q11173) and gene (Q7187) at the same time. The presence
of both gene and chemical compound classes in the extraction filters can lead to erroneous duplication of statements,
potentially attributed to an internal malfunctioning of KGTK.

4.5. Discussion

Choosing amongst the available subsetting approaches depends on the task at hand. The methods introduced in
Section 3.1 are single-purpose and usually cannot be reused to create any arbitrary subset. Amongst the practical
tools (Section 3.2), the performance and accuracy evaluation showed that WDF has the fastest and most accurate
performance; however, this tool is not flexible in defining subsets. This problem also exists in WDumper. In these
two tools the inclusion and exclusion of items, statements, and contextual metadata can be defined, there is no
possibility to make a connection between these conditions. For example, disease instances and chemical compound
instances can be extracted together; however, if only the chemical compounds related to the extracted diseases are
needed, this joined KG cannot be extracted with these tools.

KGTK and WDSub offer much higher flexibility due to their subset-defining structure derived from graph query
languages. KGTK extracting data after a round of indexing relatively fast; however, in the context of Wikidata
lacks indexing references, which is a major drawback. WDSub has the most flexible subset-defining structure in
the Wikidata ecosystem and is reasonably accurate; however, response time is slow and still in its early stages of
development (as of June 2023).

5. Flexibility Evaluation

The extent to which each tool supports common subsetting workflows is crucial. While Section 4 focuses on
the performance and accuracy in a single subsetting scenario, it should be noted that tools offer varying degrees
of support for various subsetting tasks, depending on their functionalities and features. The flexibility experiments
showcase the range of potential applications and highlight the appropriateness of each tool for specific subsetting
requirements. This section investigates more diverse subsetting tasks involving different parts of the Wikidata data
model supported by each evaluated tool, thereby providing a more comprehensive understanding of their practical
applicability. The first use case is the Gene Wiki project evolution from 2015 to 2022, the second is genes names and
descriptions in four languages, and the third is instances of chemical compounds that are referenced with reference
URL (P854). All subsets were extracted using WDSub; however, the possibility of creating a similar subset using
other practical tools is discussed. The scripts, schemas, and SPARQL queries of this experiment can be found in the
GitHub repository of the paper [37].

5.1. Gene Wiki Evolution

The Gene Wiki Project [43] focuses on populating and maintaining Wikidata as a central hub of linked knowledge
on genes, proteins, diseases, drugs, and related Life Science items. This project is one of the most active WikiPro-
jects in terms of human and bot contribution [28]. The project is initiated based on a class-level diagram of the
Wikidata knowledge graph for biomedical entities, which specifies 17 main classes [44]. The Wikidata WikiProject
has extended the classes into 24 item classes.

The Gene Wiki evolution experiment aims to (i) capture a subsetting schema where the participating classes have
connectivity to each other, and (ii) show the change in the amount of data instances from the early years of Wikidata.
WDSub is deployed to extract the Gene Wiki subsets containing instances of the 20 classes pictured in [43] UML
class diagram. The steps are:

– Creating a ShEx schema that represents the data model depicted in [43]. The ShExC format of the defined
shapes is in Appendix A;

32See Lines 407-481 of file ‘item-Q418553-found.json’ in [38] - accessed 10 June 2023

14 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
The number of instances for each Gene Wiki class from 2015 to 2022 and the number of instances on the live Wikidata Query Service (queried
on 22 December 2022).

Class 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

active site 0 0 132 132 132 132 132 132 132
anatomical structure 4 62 470 483 614 732 738 812 746
binding site 0 0 76 76 76 77 77 77 76
biological pathway 0 0 425 2,754 2,929 3,279 3,429 3,486 3,554
biological process 11 12 31,263 31,222 42,058 43,417 42,061 41,857 42,449
cellular component 1 1 4,017 4,081 4,239 4,298 4,137 4,139 4,211
chemical compound 19,144 21,128 156,718 157,018 157,685 1,050,488 1,201,719 1,245,041 1,249,719
chromosome 0 0 149 152 432 9,167 9,224 9,223 9,224
disease 124 931 9,578 9,926 11,439 13,197 5,395 5,607 5,698
gene 17 20 679,372 677,836 811,574 1,196,193 1,196,334 1,211,506 Timed-Out
medication 46 2,127 2,459 2,472 2,699 3,210 3,336 3,424 3,450
molecular function 0 0 9,413 9,801 11,258 11,226 10,940 10,898 11,246
pharmaceutical product 0 0 1,067 1,067 2,725 2,754 2,759 2,774 2,784
protein domain 2 3 9,581 8,847 9,348 10,770 11,274 11,709 11,736
protein family 0 212 20,912 20,632 22,240 22,170 23,277 24,204 24,266
protein 118 166 450,785 487,781 579,979 980,520 985,755 988,099 Timed-Out
sequence variant 0 0 1,411 918 774 724 695 686 686
supersecondary structure 0 0 687 687 688 688 694 696 696
symptom 16 235 273 283 328 366 319 335 343
taxon 1,920,049 2,121,404 2,213,907 2,318,731 2,492,613 2,769,303 2,929,068 3,478,871 3,491,430

– Downloading the wikidata JSON dumps from 2015 to 2022 (exact dates are in Appendix B) which are available
at Internet Archive33;

– Deploying WDSub to create a subset from each dump.

A SPARQL query script is then run that counts the number of each item for each shape (class) and each link between
shapes. Table 6 shows the number of instances for each class. The first attention-drawing point is the variation
in the number of instances in different classes. The taxon, gene, protein and chemical compound classes have the
highest number of items, such that more than 97% of the items in all the investigated dumps are instances of these
four classes. Part of this heterogeneity is due to the nature of the abundance of classes. For example, the number
of genes should be more than diseases, but it is not clear why in some classes the number of instances is so low,
e.g., the number of anatomical structure instances seems less than expected. The number of instances in all classes
except the biological process, cellular component, disease, molecular function, sequence variant, and symptom has
increased continuously from 2015 to 2022. In addition to having the largest amount of data in all dumps, the data
growth acceleration in the taxon, gene, protein, and chemical compound classes is also more than the other classes
from 2015 and 2022. In all exceptional classes above, the peak point belongs to dump 2020. Then the number
of instances decreases in 2021 and 2022, reaching the previous 2020 level in 2023, where the Wikidata SPARQL
endpoint has been queried. The reason for this behaviour is not clear. It has been hypothesized that the number
of instances was raised due to inaccurate bot activities in 2020, which was restored during human curations in the
following two years and reached the same level again due to more accurate bots. Another observation is the low
number of genes, proteins and chemical compound instances before 2017. The Gene Wiki WikiProject started and
began populating data in 2015. These classes are the main focuses of the Gene Wiki community data population. It
is found that the low number of instances in the 2015 and 2016 dumps is not due to the lack of A-Boxes, but due to
the lack of instance of (P31) statements in the A-Boxes. Using instance of (P31) statements to specify the class of
an item is a recent practice in Wikidata, thus, there was approximately the same number of the gene, protein, and

33https://www.wikidata.org/wiki/Wikidata:Database_download - accessed 14 February 2023

https://www.wikidata.org/wiki/Wikidata:Database_download

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

chemical compound instances in 2015 and 2016 on Wikidata identified by external identifiers such as Entrez Gene
ID (P351), UniProt protein ID (P352), and InChI (P234), instead of instance of (P31) property.

The extracted subsets in this experiment can also be constructed by other practical tools of Section 3.2. The defi-
nition of these subsets in WDSub is based on writing a shape corresponding to each class containing the properties
defined in the class diagram [43]. Such filters can be implemented by all other tools as well. In WDumper and WDF,
one can simply write the corresponding filters based on the value of the parameters of the mentioned properties
(the properties inside a Shape will be logical AND together). However, in some definitions, WDumper and WDF
can not imitate the WDSub definition exactly. The reason for this is that in WDSub any number of relationships
amongst shapes can be defined. For example, the :active_site class in Appendix A is related to the form
:protein_family class via wdt:P361 property. Now suppose the * operator in line 34 is replaced with a +.
At extraction time, WDSub will not extract any active site instances that are not connected to at least one instance
of a protein family. Unfortunately, such filtering and connections are not possible in WDumper and WDF. In these
two tools, only one specific value can be defined for a property filter; it is not possible for the value to be of a
specific class or related to other conditions (in WDumper, there is a possibility to define a condition saying a value
should have existed, whatever that value is). KGTK can establish any relationship between conditions as its Kypher
definition system is based on Cypher query language and has definition flexibility similar to ShEx. The extracted
subsets can be found on Zenodo [45].

5.2. Subsetting on Labels and Comments: Genes + Taxons

Using the ShEx schema in Appendix C, a subset of Genes and Taxons instances from 2015 to 2022 is created,
considering instances which have both labels and descriptions in English, Dutch, Farsi, and Spanish. Item instances
that do not have a label or description in one of these four languages should not be extracted (aliases condition
is considered with a * operator, which means that instances with zero aliases in the four languages can be in the
subset).

Table 7 shows the number of instances separated by label, description, and alias languages along with the total
number of extracted items. The difference between the number of labels, descriptions and aliases can also be seen.
In general, English aliases are more than labels, which shows that on average each item has more than one English
alias. By comparing between languages, it can be seen that the amount of labels, descriptions, and aliases in Farsi is
lower than in other languages. This is more obvious in Genes compared to Taxons. In Spanish and Dutch, the number
of labels and descriptions are close, which shows that wherever there is a label for this language, a description has
also been added (note that labels and descriptions are usually added once for each language while aliases are more
than one). While having fewer Farsi labels and aliases can be justified by the lack of proper translation, having fewer
descriptions is due to the fewer Farsi-speaking participants (or their limited activity in Genes and Taxons). The low
amount of data in Genes before 2017 which is explained in Section 5.1, can be seen here again. As the table shows,
counting the number on Wikidata Query Service has been timed out in multiple taxon queries.

Subsetting on labels and comments can also be done by KGTK. KGTK and WDSub can define conditions even
on the values of the label, e.g. define a shape (in KGTK a Kypher term) with a label condition the value specified to
"John Smith" and extract all entities with the name John Smith from Wikidata. Filtering labels and comments
is not possible with this flexibility in WDF and WDumper. In both WDF and WDumper, users can choose whether
to skip labels and textual metadata (such as discriptions) along with the selected item. It is also possible to extract
labels and comments in their specified languages (and not all languages). However, these options are considered
post-filters, i.e., items are first selected based on property-based conditions, and then textual metadata can be ignored
or kept on the selected items. Another limitation is that this option can be deployed either on all extracted items
or non of them, e.g., it is not possible to extract a group of items with English labels and another group with Farsi
labels. Initial selection based on language or value of a label/comment is not doable in WDF and WDumper. The
extracted subsets can be found on Zenodo [46].

16 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
The total and language seperated number of instances for Gene and Taxon class from 2015 to 2022 and the number of instances on the live
Wikidata Query Service (queried on 14 February 2023).

Class Casework 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

Gene

Total 17 20 679,372 677,836 811,574 1,196,193 1,196,334 1,211,506 1,215,324
English Labels 16 18 679,365 677,827 811,567 1,196,185 1,196,326 1,211,497 1,215,314
English Desc. 7 9 679,294 677,756 756,847 756,590 756,738 772,034 775,878
English Aliases 2 15 1,954,528 1,843,927 1,810,033 1,945,779 1,947,441 1,975,129 1,980,192
Spanish Labels 2 2 174,041 173,978 194,966 195,079 195,065 194,231 194,232
Spanish Desc. 2 2 174,034 173,971 194,959 195,062 195,041 194,203 194,201
Spanish Aliases 1 1 123 99 114 162 176 183 184
Farsi Labels 1 0 130 132 528 814 872 917 1,033
Farsi Desc. 0 0 37 37 38 58 60 65 67
Farsi Aliases 0 0 22 21 21 21 21 24 21
Dutch Labels 0 1 174,064 174,002 577,876 1,139,308 1,139,333 1,138,431 1,138,415
Dutch Desc. 0 1 174,238 174,175 578,398 1,139,889 1,139,913 1,139,012 1,138,995
Dutch Aliases 0 0 18 16 20 97 136 137 138

Taxon

Total 1,920,049 2,121,404 2,213,907 2,318,731 2,492,613 2,769,303 2,929,068 3,478,871 3,501,933
English Labels 1,919,371 2,097,013 2,189,417 2,296,723 2,480,923 2,766,134 2,925,938 3,475,703 Timed-Out
English Desc. 278,192 1,996,512 2,057,254 2,064,478 2,072,360 2,422,773 2,448,469 2,656,646 Timed-Out
English Aliases 9,446 52,100 70,484 72,596 78,735 91,967 95,733 111,908 Timed-Out
Spanish Labels 1,917,529 2,085,263 2,187,890 2,295,164 2,476,641 2,764,597 2,923,922 3,470,714 Timed-Out
Spanish Desc. 18,846 24,991 770,220 1,610,043 1,622,695 1,625,360 1,626,266 1,628,861 Timed-Out
Spanish Aliases 82,482 83,497 85,599 86,393 86,988 87,833 88,231 88,176 11,1641
Farsi Labels 17,418 18,074 17,990 18,000 24,021 28,017 28,354 29,436 Timed-Out
Farsi Desc. 169,462 167,849 166,932 166,880 166,773 167,075 166,900 167,226 Timed-Out
Farsi Aliases 2,912 2,749 2,720 2,728 2,736 2,774 2,769 2,799 2,810
Dutch Labels 926,956 2,089,454 2,191,695 2,297,575 2,478,838 2,766,321 2,926,153 3,474,191 Timed-Out
Dutch Desc. 17,345 2,073,612 2,197,568 2,224,851 2,410,399 2,690,073 2,838,424 3,278,973 Timed-Out
Dutch Aliases 29,744 31,425 32,467 33,471 34,289 35,977 36,739 37,767 38,151

5.3. Subsetting on References: Referenced Chemical Compounds

This section deploys references as filters and extract those chemical compound instances that their instance
of (P31) fact has been referenced by a reference URL (P854). Using WDSub, the scenario is to extract two different
subsets according to the following schemas:

Schema 1 (referenced instances) This schema is designed to extract all instances of (P31) chemical compounds
(Q11173) that have been referenced by at least one reference URL (P854). Any chemical compound instances
whose instances of (P31) fact have no reference using reference URL (P854) property should be excluded and
not be in the subset. The schema can be seen in Appendix D.1.

Schema 2 (all instances) This schema extracts all instances of (P31) chemical compounds (Q11173), no matter
whether the instances of (P31) fact has been referenced or not. The schema can be seen in Appendix D.2.

The property reference URL (P854) provides primary external sources which are preferable provenance types ac-
cording to Wikidata referencing policies. Choosing instance of (P31) statement is arbitrary. To observe the amount
of such referenced statements, subsets from Wikidata dumps from 2015 to 2022 are extracted similar to Sections 5.1
and 5.2. To investigate whether extraction via Schema 1 includes only referenced instances, the following queries
are performed on both Schema 1 and Schema 2 subsets:

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 8
The number of referenced and not referenced chemical compound instances in Wikidata subsets from 2015 to 2022 and the Wikidata Query
Service (queried on 14 February 2023).

chemical compound (Q11173) 2015 2016 2017 2018 2019 2020 2021 2022 Wikidata

Query 1
(referenced
instances)

1 0 26 27 25 18 16 16
Not
Applicable

Schema 1
(referenced
instances)

Query 2
(all
instances)

1 0 26 27 25 18 16 16
Not
Applicable

Query 1
(referenced
instances)

1 0 26 27 25 18 17 16 32

Schema 2
(not referenced
instances)

Query 2
(all
instances)

18,630 17,477 15,1970 15,1716 15,1506 1,036,696 1,187,186 1,109,165 1,251,822

Query 1 (referenced instances) Counts those chemical compound instances that their instances of (P31) state-
ment has a reference URL (P854)34.

Query 2 (all instances) Counts the number of chemical compound instances in general35.

Table 8 shows the number of chemical compound instances obtained from performing the two queries on the 2015
to 2022 subsets. In the last column, it can be seen the number of referenced and not referenced chemical com-
pound instances on Wikidata. As the results show, WDSub accurately excludes not referenced chemical compound
instances in extraction. In all dumps, the number of referenced instances fetched by the referenced query (Query1)
in the general subset (extracted using Schema 2) is equal to the total number of instances (fetched by the general
query, Query2) in the referenced subset (extracted using Schema 1). The only inconsistency is in the column of
dump 2021, where there are 17 referenced instances in the subset extracted by the general schema, while there are
16 instances in the subset extracted by the referenced schema. In other words, there is one referenced instance in
the input dump which is not extracted by WDsub. However, this is not an unexpected missing item. The missed
item is nirmatrelvir (Q106405348), which has two separate reference URL (P854) values in its instance of (P31)
statement. To extract shapes with more than one property, the ShEx schema requires the EXTRA qualifier to open
the reference URL (P854) triple constraint. Thus, adding EXTRA prov:wasDerivedFrom to Line 11 of the
Schema D.1 solves this inconsistency. Overall, the number of instances referenced by the reference URL (P854)
property is low in all subsets and Wikidata. Subsetting based on references is not possible in KGTK, WDumper,
and WDF. The extracted subsets can be found on Zenodo [47].

6. Conclusions

In this paper, the problem of subsetting in Wikidata was reviewed. As a continuously edited KG, Wikidata has
a massive amount of data which cannot be queried from the SPARQL endpoint in all cases. Its weekly RDF and
JSON dumps are maintained for a short period of time and hosting a Wikidata dump is costly. On the other hand,
research and applications may need a specific scope of its data. Subsetting provides a platform to extract a dedicated
part of the data from Wikidata, reducing the overall cost and facilitating the reproducibility of experiments.

The paper surveyed all available subsetting approaches over Wikidata and other KGs and explained their advan-
tages and limitations. In the context of Wikidata, four subsetting approaches are distinguishable as practical subset-

34https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/
sparql/number_chemical_referenced.sparql - accessed 10 June 2023.

35https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/
sparql/number_chemical_not_referenced.sparql - accessed 10 June 2023.

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_not_referenced.sparql
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/blob/0d54e50/flexibility-experiments/referenced-chemical-compounds/sparql/number_chemical_not_referenced.sparql

18 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ting tools that can be deployed to extract a given defined subset: WDSub, WDumper, WDF, and KGTK. The perfor-
mance, accuracy, and flexibility evaluations were then established over these four practical tools by defining several
subsetting use cases. The results show that in terms of performance (i.e., the speed of extraction), WDF is the fastest
tool and it can extract a subset in less than 4 hours. In terms of accuracy (i.e., extracting what is defined exactly, not
more or less) the results show that WDF extracts all items and statements as exactly as they are present in the input
dump. The ratio of missed items is less than 0.05% all tools missed less than %4 of items and that can be justified by
the inconsistencies and syntax errors in the input dumps. In terms of flexibility (i.e., how much the tool allows the
designer to define complex subsets on different parts of the Wikidata data model), three use cases have been defined
and several subsets have been extracted from Wikidata dumps from 2015 to 2022. At first, a subsetting on different
classes of the Gene Wiki WikiProject was performed and all tools supported such a subsetting. Then the subsets of
genes and taxons were extracted based on having English, Spanish, Farsi, and Dutch labels and comments, which
WDSub and KGTK supported such filtering. In the end, subsets of referenced chemical compounds were extracted
and only WDSub was able to perform filters on references. The flexibility tests show that the most flexible tool for
subsetting is WDSub, mainly because of its defining language which is ShEx and has the flexibility of SPARQL
queries. During the subsetting, valuable information was gained about the amount of data in Wikidata from 2015 to
2022.

Subsetting faces many open questions. The first open question is subsetting other KGs, such as DBPedia, where
the vocabulary is different and the dumps are not in JSON. There are also many massive collections of data sup-
porting RDF, such as Uniprot and PubChem that can be the subject of subsetting. Another future work is to have
flexibility and performance with one tool. WDSub is the most flexible tool but when you have flexibility, your filters
take a longer time to be applied on the input dump items. SparkWDSub [48] is an under-development subsetting
tool for Wikidata based on WDSub, which implements graph traversal for subset creation. To improve the speed,
SparkWDSub uses the Apache Spark platform to distribute the computation. This tool is in the initial stages of
development. Live subsets are the other future path. In this study (as well as in other related projects) several topical
subsets have been extracted for which reusability is one of the main features. Over time with the new edits coming,
the gap between these subsets and the corresponding data in Wikidata will increase. This gap can be reduced by
repeating the subsetting process regularly, and by reducing the interval to an acceptable level (e.g., one day), end
users can reach practically live subsets. A better solution is not to spend the extraction time for each repetition,
instead, to generate the subset and apply the edits in real-time by establishing an active link between the Wikidata
database and the subset. The main challenge in this task is hosting issues and the fact that Wikidata does not have a
public API for establishing active links to the best of our knowledge. Subsetting also suffers from not having proper
documentation. There is an essential need to aggregate and document all subsetting definition efforts as a training
wiki, in which users can learn and define desired subsets effectively in a reasonable time.

Acknowledgement. This paper has progressed in several hackathons and tutorials of the ELIXIR BioHackathon-
Europe series and SWAT4HCLS, and we would like to thank the organizers and participants. Suggestions and
intellectual contributions of Dan Brickley, Lydia Pintscher, Eric Prud’hommeaux, Thad Guidry, and Filip Ilievski
are greatly appreciated. This project has benefited from part of the following research grants: project PID2020-
117912RB, ANGLIRU: Applying kNowledge Graphs to research data interoperabiLIty and ReUsability. The Alfred
P. Sloan Foundation under grant number G-2021-17106 for the development of Scholia. The project R01GM089820
from the National Institutes of General Medical Sciences.

References

[1] D. Vrandečić and M. Krötzsch, Wikidata: a free collaborative knowledgebase, Communications of the ACM 57(10) (2014), 78–85.
doi:10.1145/2629489.

[2] A. Waagmeester, G. Stupp, S. Burgstaller-Muehlbacher et al., Wikidata as a knowledge graph for the life sciences, eLife 9 (2020), e52614,
Publisher: eLife Sciences Publications, Ltd. doi:10.7554/eLife.52614.

[3] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg et al., The FAIR Guiding Principles for scientific data management and stewardship,
Scientific Data 3(1) (2016), 160018, Number: 1 Publisher: Nature Publishing Group. doi:10.1038/sdata.2016.18.

[4] L. Koesten, P. Vougiouklis, E. Simperl and P. Groth, Dataset Reuse: Toward Translating Principles to Practice, Patterns 1(8) (2020), 100–
136. doi:10.1016/j.patter.2020.100136. https://www.sciencedirect.com/science/article/pii/S2666389920301847.

https://www.sciencedirect.com/science/article/pii/S2666389920301847

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[5] M.A. Rodriguez, The Gremlin graph traversal machine and language (invited talk), in: Proceedings of the 15th Symposium on Database
Programming Languages, DBPL 2015, Association for Computing Machinery, New York, NY, USA, 2015, pp. 1–10. ISBN 978-1-4503-
3902-5. doi:10.1145/2815072.2815073.

[6] S.A.H. Beghaeiraveri, A.J.G. Gray and F.J. McNeill, Experiences of Using WDumper to Create Topical Subsets from Wikidata, in: CEUR
Workshop Proceedings, Vol. 2873, CEUR-WS, 2021, p. 13, ISSN: 1613-0073. https://researchportal.hw.ac.uk/files/45184682/paper13.pdf.

[7] J.E. Labra-Gayo, Creating Knowledge Graphs Subsets using Shape Expressions, arXiv:2110.11709 [cs] (2021), arXiv: 2110.11709. http:
//arxiv.org/abs/2110.11709.

[8] M. Cutcher, M. Personick and B. Thompson, The Bigdata® RDF Graph Database, in: Linked Data Management, Chapman and Hall/CRC,
2014, Num Pages: 46. ISBN 978-0-429-10245-5.

[9] Rhizome, Rhizome Artbase, 2021. https://artbase.rhizome.org/wiki/Main_Page.
[10] FactGrid, FactGrid, 2022. https://database.factgrid.de/wiki/Main_Page.
[11] D. Diefenbach, M.D. Wilde and S. Alipio, Wikibase as an Infrastructure for Knowledge Graphs: The EU Knowledge Graph, in: The Seman-

tic Web – ISWC 2021, A. Hotho, E. Blomqvist, S. Dietze, A. Fokoue, Y. Ding, P. Barnaghi, A. Haller, M. Dragoni and H. Alani, eds, Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2021, pp. 631–647. ISBN 978-3-030-88361-4. doi:10.1007/978-3-
030-88361-4_37.

[12] Wikimedia, Wikibase/Indexing/RDF Dump Format - MediaWiki, 2022. https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_
Format.

[13] S. Lampa, E. Willighagen, P. Kohonen, A. King, D. Vrandečić, R. Grafström and O. Spjuth, RDFIO: extending Semantic MediaWiki for
interoperable biomedical data management, Journal of Biomedical Semantics 8(1) (2017), 35. doi:10.1186/s13326-017-0136-y.

[14] A. Waagmeester et al., Wikidata:WikiProject Schemas/Subsetting - Wikidata, 2019, https://www.wikidata.org/wiki/Wikidata:WikiProject_
Schemas/Subsetting - accessed 31 December 2020. https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting.

[15] J.E. Labra-Gayo, A. González-Hevia, D. Fernández-Álvarez, A. Ammar, D. Brickley, A. Gray, E. Prud’hommeaux, D. Slenter, H. Solbrig,
S.A.H. Beghaeiraveri, B. Fünkfstük, A. Waagmeester, E. Willighagen, L. Ovchinnikova, G. Benjaminsen, R. García-González, L.J. Garcia-
Castro and D. Mietchen, Knowledge graphs and wikidata subsetting, Technical Report, 2021, Type: article. doi:10.37044/osf.io/wu9et.

[16] J.E. Labra-Gayo, A.C. González Cavazos, A. Waagmeester, N. Hofmann, S.A.H. Beghaeiraveri, E. Prud’hommeaux, S. Ul-Hasan, E. Wil-
lighagen and A. Ammar, Enhancement and Reusage of Biomedical Knowledge Graph Subset, Technical Report, 2022, Type: article.
doi:10.37044/osf.io/n7qku.

[17] S. Matsumoto, R. Yamanaka and H. Chiba, Mapping RDF graphs to property graphs, arXiv preprint arXiv:1812.01801 (2018).
[18] N. Mimouni, J.-C. Moissinac and A. Vu, Knowledge Base Completion With Analogical Inference on Context Graphs, in: Semapro 2019,

2019.
[19] N. Mimouni, J.-C. Moissinac and A. Tuan, Domain Specific Knowledge Graph Embedding for Analogical Link Discovery, Advances in

Intelligent Systems (2020).
[20] D. Henselmann and A. Harth, Constructing demand-driven Wikidata Subsets., in: Wikidata@ ISWC, 2021.
[21] S. Aghaei, K. Angele and A. Fensel, Building Knowledge Subgraphs in Question Answering over Knowledge Graphs, in: Web Engineering,

T. Di Noia, I.-Y. Ko, M. Schedl and C. Ardito, eds, Lecture Notes in Computer Science, Springer International Publishing, Cham, 2022,
pp. 237–251. ISBN 978-3-031-09917-5. doi:10.1007/978-3-031-09917-5_16.

[22] J.E. Labra-Gayo, E. Prud’Hommeaux, I. Boneva and D. Kontokostas, Validating RDF data, Vol. 7, Morgan & Claypool Publishers, 2017,
pp. 1–328.

[23] E. Prud’hommeaux, shex.js, shexjs, 2022, original-date: 2015-08-06T07:18:07Z. https://github.com/shexjs/shex.js.
[24] H. Solbrig, Python implementation of ShEx 2.0, 2022, original-date: 2018-01-02T17:56:53Z. https://github.com/hsolbrig/PyShEx.
[25] B. Fünfstück, WDumper, 2019. https://github.com/bennofs/wdumper.
[26] Wikimedia, Wikidata:Database download, 2022. https://www.wikidata.org/wiki/Wikidata:Database_download.
[27] S.A.H. Beghaeiraveri, WDumper, 2021. https://github.com/seyedahbr/wdumper.
[28] S.A.H. Beghaeiraveri, A. Gray and F. McNeill, Reference Statistics in Wikidata Topical Subsets, in: Proceedings of the 2nd Wikidata

Workshop (Wikidata 2021), CEUR Workshop Proceedings, Vol. 2982, CEUR, Virtual Conference, October, 2021, ISSN: 1613-0073. https:
//researchportal.hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf.

[29] S.A.H. Beghaeiraveri, Towards Automated Technologies in the Referencing Quality of Wikidata, in: Companion Proceedings of The Web
Conference 2022, 2022. https://www2022.thewebconf.org/PaperFiles/8.pdf.

[30] J.E. Labra-Gayo, wdsub, Web Semantics Oviedo, University of Oviedo, 2022, original-date: 2021-07-05T09:27:56Z. https://github.com/
weso/wdsub.

[31] J.E. Labra-Gayo, WShEx: A language to describe and validate Wikibase entities, in: Proceedings of the 3rd Wikidata Workshop 2022
co-located with the 21st International Semantic Web Conference (ISWC2022), Vol. Vol-3262, 2022.

[32] F. Ilievski, D. Garijo, H. Chalupsky, N.T. Divvala, Y. Yao, C. Rogers, R. Li, J. Liu, A. Singh and D. Schwabe, KGTK: a toolkit for large
knowledge graph manipulation and analysis, in: International Semantic Web Conference, Springer, 2020, pp. 278–293. https://arxiv.org/
pdf/2006.00088.pdf.

[33] USC-ISI, KGTK: Knowledge Graph Toolkit, USC ISI I2, 2022, original-date: 2020-01-18T03:34:48Z. https://github.com/usc-isi-i2/kgtk.
[34] K. Shenoy, F. Ilievski, D. Garijo, D. Schwabe and P. Szekely, A Study of the Quality of Wikidata, Journal of Web Semantics 72 (2022),

100679, Publisher: Elsevier.
[35] F. Ilievski, P. Szekely and B. Zhang, Cskg: The commonsense knowledge graph, in: European Semantic Web Conference, Springer, 2021,

pp. 680–696.
[36] maxlath, wikibase-dump-filter, 2022, original-date: 2016-04-27T22:18:04Z. https://github.com/maxlath/wikibase-dump-filter.

https://researchportal.hw.ac.uk/files/45184682/paper13.pdf
http://arxiv.org/abs/2110.11709
http://arxiv.org/abs/2110.11709
https://artbase.rhizome.org/wiki/Main_Page
https://database.factgrid.de/wiki/Main_Page
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://github.com/shexjs/shex.js
https://github.com/hsolbrig/PyShEx
https://github.com/bennofs/wdumper
https://www.wikidata.org/wiki/Wikidata:Database_download
https://github.com/seyedahbr/wdumper
https://researchportal.hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf
https://researchportal.hw.ac.uk/files/53252708/Reference_Statistics_in_Wikidata_Topical_Subsets_corrected_version.pdf
https://www2022.thewebconf.org/PaperFiles/8.pdf
https://github.com/weso/wdsub
https://github.com/weso/wdsub
https://arxiv.org/pdf/2006.00088.pdf
https://arxiv.org/pdf/2006.00088.pdf
https://github.com/usc-isi-i2/kgtk
https://github.com/maxlath/wikibase-dump-filter

20 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[37] kg-subsetting, kg-subsetting/paper-wikidata-subsetting-2023, kg-subsetting, 2023. https://github.com/kg-subsetting/
paper-wikidata-subsetting-2023/releases/tag/v2.0.0.

[38] S.A.H. Beghaeiraveri, J.E. Labra-Gayo and A. Waagmeester, Wikidata Subsetting: Performance and Accuracy Experiment Datasets, Zen-
odo, 2023, https://doi.org/10.5281/zenodo.8015611. doi:10.5281/zenodo.8015611.

[39] Wikimedia, Wikidata json.gz Full Dump (3 Jan 2022), 2022. https://academictorrents.com/details/
229cfeb2331ad43d4706efd435f6d78f40a3c438.

[40] Wikimedia, Wikidata:Database download, 2022. https://dumps.wikimedia.org/wikidatawiki/entities/.
[41] H. Chalupsky, P. Szekely, F. Ilievski, D. Garijo and K. Shenoy, Creating and Querying Personalized Versions of Wikidata on a Laptop

(2021). http://arxiv.org/abs/2108.07119.
[42] L. Pintscher, Wikidata EntitySchemas Telegram Group, 2022, Message: https://t.me/c/1540810474/327. https://t.me/joinchat/

ZeRz5wPDxpNkZGVk.
[43] Wikimedia, Wikidata:WikiProject Gene Wiki, 2020. https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki.
[44] S. Burgstaller-Muehlbacher, A. Waagmeester, E. Mitraka, J. Turner, T. Putman, J. Leong, C. Naik, P. Pavlidis, L. Schriml, B.M. Good and

A.I. Su, Wikidata as a semantic framework for the Gene Wiki initiative, Database (Oxford) 2016 (2016). doi:10.1093/database/baw015.
[45] J.E. Labra-Gayo, S.A.H. Beghaeiraveri and A. Waagmeester, Generated Wikidata Subset for Gene Wiki Evolution, Zenodo, 2023, URLs:

Dump 2015: https://zenodo.org/record/7869017, Dump 2016: https://zenodo.org/record/7883958, Dump 2017: https://zenodo.org/record/
7872555, Dump 2018: https://zenodo.org/record/7872054, Dump 2019: https://zenodo.org/record/7871988, Dump 2020: https://zenodo.
org/record/7871627, Dump 2021: https://zenodo.org/record/7870223, Dump 2022: https://zenodo.org/record/7869110.

[46] J.E. Labra-Gayo, S.A.H. Beghaeiraveri and A. Waagmeester, Generated Wikidata Subset for Genes + Taxons, Zenodo, 2023, URLS:
Dump 2015: https://zenodo.org/record/7884057, Dump 2016: https://zenodo.org/record/7884081, Dump 2017: https://zenodo.org/record/
7884116, Dump 2018: https://zenodo.org/record/7884297, Dump 2019: https://zenodo.org/record/7884316, Dump 2020: https://zenodo.
org/record/7884424, Dump 2021: https://zenodo.org/record/7943929#.ZGSKw3bP2Uk, Dump 2022: https://zenodo.org/record/7944035#
.ZGSTOXbP2Uk.

[47] S.A.H. Beghaeiraveri, J.E. Labra-Gayo and A. Waagmeester, Wikidata Subsetting: Reference-based Subsetting Experiment Datasets, Zen-
odo, 2023, https://doi.org/10.5281/zenodo.8015689. doi:10.5281/zenodo.8015689.

[48] J.E. Labra-Gayo, sparkwdsub, Web Semantics Oviedo, University of Oviedo, 2021, original-date: 2021-08-18T06:29:18Z. https://github.
com/weso/sparkwdsub.

Appendix A. Gene Wiki ShEx

The ShExC shape expressions that is used to extract Gene Wiki subsets via WDSub is as follow:

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX wd: <http://www.wikidata.org/entity/>
4 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
5 PREFIX : <http://example.org/>
6

7 start= @:active_site OR
8 @:anatomical_structure OR
9 @:binding_site OR

10 @:biological_pathway OR
11 @:biological_process OR
12 @:cellular_component OR
13 @:chemical_compound OR
14 @:chromosome OR
15 @:disease OR
16 @:gene OR
17 @:mechanism_of_action OR
18 @:medication OR
19 @:molecular_function OR
20 @:pharmaceutical_product OR
21 @:pharmacologic_action OR
22 @:protein_domain OR

https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/releases/tag/v2.0.0
https://github.com/kg-subsetting/paper-wikidata-subsetting-2023/releases/tag/v2.0.0
https://doi.org/10.5281/zenodo.8015611
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
https://academictorrents.com/details/229cfeb2331ad43d4706efd435f6d78f40a3c438
https://dumps.wikimedia.org/wikidatawiki/entities/
http://arxiv.org/abs/2108.07119
https://t.me/joinchat/ZeRz5wPDxpNkZGVk
https://t.me/joinchat/ZeRz5wPDxpNkZGVk
https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki
https://zenodo.org/record/7869017
https://zenodo.org/record/7883958
https://zenodo.org/record/7872555
https://zenodo.org/record/7872555
https://zenodo.org/record/7872054
https://zenodo.org/record/7871988
https://zenodo.org/record/7871627
https://zenodo.org/record/7871627
https://zenodo.org/record/7870223
https://zenodo.org/record/7869110
https://zenodo.org/record/7884057
https://zenodo.org/record/7884081
https://zenodo.org/record/7884116
https://zenodo.org/record/7884116
https://zenodo.org/record/7884297
https://zenodo.org/record/7884316
https://zenodo.org/record/7884424
https://zenodo.org/record/7884424
https://zenodo.org/record/7943929#.ZGSKw3bP2Uk
https://zenodo.org/record/7944035#.ZGSTOXbP2Uk
https://zenodo.org/record/7944035#.ZGSTOXbP2Uk
https://doi.org/10.5281/zenodo.8015689
https://github.com/weso/sparkwdsub
https://github.com/weso/sparkwdsub

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

23 @:protein_family OR
24 @:protein OR
25 @:sequence_variant OR
26 @:supersecondary_structure OR
27 @:symptom OR
28 @:taxon OR
29 @:therapeutic_use
30

31 :active_site EXTRA wdt:P31 {
32 rdfs:label [@en] ;
33 wdt:P31 [wd:Q423026] ;
34 wdt:P361 @:protein_family * ;
35 wdt:P527 @:protein_family * ;
36 }
37

38 :anatomical_structure EXTRA wdt:P31 {
39 rdfs:label [@en] ;
40 wdt:P31 [wd:Q4936952] ;
41 wdt:P361 @:anatomical_structure * ; # part of (P361)
42 wdt:P527 @:anatomical_structure * # has part(s) (P527)
43 }
44

45 :binding_site EXTRA wdt:P31 {
46 rdfs:label [@en] ;
47 wdt:P31 [wd:Q616005] ;
48 wdt:P361 @:protein_family * ;
49 wdt:P527 @:protein_family * ;
50 }
51

52 :biological_pathway EXTRA wdt:P31 {
53 rdfs:label [@en] ;
54 wdt:P31 [wd:Q4915012] ;
55 wdt:P527 @:biological_pathway * ;
56 wdt:P361 @:biological_pathway * ;
57 wdt:P361 @:gene * ;
58 wdt:P527 @:gene * ;
59 wdt:P361 @:medication * ;
60 wdt:P527 @:medication * ;
61 wdt:P361 @:chemical_compound * ;
62 wdt:P527 @:chemical_compound * ;
63 wdt:P703 @:taxon * ;
64 wdt:P1050 @:disease* ;
65 }
66

67 :biological_process EXTRA wdt:P31 {
68 rdfs:label [@en] ;
69 wdt:P31 [wd:Q2996394] ;
70 wdt:P279 @:biological_process * ; # subclass of (P279)
71 wdt:P361 @:biological_process * ; # part of (P361)
72 wdt:P527 @:biological_process * ; # has part(s) (P527)
73 wdt:P128 @:biological_process * ; # has part(s) (P527)

22 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

74 wdt:P128 @:molecular_function * ; # regulates (molecular biology) (P128)
75 wdt:P361 @:medication * ; # part of (P361)
76 wdt:P527 @:medication * ; # has part(s) (P527)
77 wdt:P361 @:chemical_compound * ; # part of (P361)
78 wdt:P527 @:chemical_compound * ; # has part(s) (P527)
79 wdt:P279 @:biological_process * # subclass of (P279)
80 }
81

82 :cellular_component EXTRA wdt:P31 {
83 rdfs:label [@en] ;
84 wdt:P31 [wd:Q5058355] ;
85 wdt:P279 @:cellular_component * ; # subclass of (P279)
86 wdt:P361 @:cellular_component * ; # part of (P361)
87 wdt:P681 @:cellular_component * ; # cell component (P681)
88 wdt:P527 @:cellular_component * ; # has part(s) (P527)
89 }
90

91 :chemical_compound EXTRA wdt:P31 {
92 rdfs:label [@en] ;
93 wdt:P31 [wd:Q11173] ;
94 wdt:P3364 @:chemical_compound * ;
95 wdt:P769 @:chemical_compound * ;
96 wdt:P2868 @:pharmacologic_action * ;
97 wdt:P769 @:pharmacologic_action * ; # significant drug interaction (P769)
98 wdt:P279 @:pharmacologic_action * ; # subclass of (P279)
99 wdt:P361 @:medication * ; # part of (P361)

100 wdt:P527 @:medication * ; # has part(s) (P527)
101 wdt:P2868 @:mechanism_of_action *; # subject has role (P2868)
102 wdt:P3489 @:disease * ; # pregnancy category (P3489)
103 }
104

105 :chromosome EXTRA wdt:P31 {
106 rdfs:label [@en] ;
107 wdt:P31 [wd:Q37748] ;
108 }
109

110 :disease EXTRA wdt:P31 {
111 rdfs:label [@en] ;
112 wdt:P31 [wd:Q12136] ;
113 wdt:P279 @:disease * ;
114 wdt:P780 @:disease * ; # symptoms and signs (P780)
115 wdt:P828 @:taxon * ; # has cause (P828)
116 wdt:P2293 @:gene * ; # genetic association (P2293)
117 wdt:P927 @:anatomical_structure * ; # anatomical location (P927)
118 wdt:P2176 @:medication * ; # drug or therapy used for treatment (P2176)
119 wdt:P2176 @:chemical_compound * ; # drug or therapy used for treatment (P2176)
120 wdt:P2176 @:therapeutic_use * ; # drug or therapy used for treatment (P2176)
121 wdt:P2175 @:medication * ; # medical condition treated (P2175)
122 wdt:P2175 @:chemical_compound * ; # medical condition treated (P2175)
123 wdt:P2175 @:therapeutic_use * ; # medical condition treated (P2175)
124 }

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

125

126 :gene EXTRA wdt:P31 {
127 rdfs:label [@en] ;
128 wdt:P31 [wd:Q7187] ;
129 wdt:P684 @:gene * ; # ortholog (P684)
130 wdt:P2293 @:disease * ; # genetic association (P2293)
131 wdt:P703 @:taxon * ; # found in taxon (P703)
132 wdt:P1057 @:chromosome * ; # chromosome (P1057)
133 wdt:P682 @:biological_process * ; # biological process (P682)
134 wdt:P688 @:protein * ; # encodes (P688)
135 }
136

137 :mechanism_of_action EXTRA wdt:P31 {
138 rdfs:label [@en] ;
139 wdt:P31 [wd:Q3271540] ;
140 }
141

142 :medication EXTRA wdt:P31 {
143 rdfs:label [@en] ;
144 wdt:P31 [wd:Q12140] ;
145 wdt:P2175 @:disease * ; # medical condition treated (P2175)
146 wdt:P3780 @:pharmaceutical_product * ;# active ingredient in (P3780)
147 wdt:P769 @:pharmacologic_action * ; # significant drug interaction (P769)
148 wdt:P769 @:chemical_compound * ; # significant drug interaction (P769)
149 wdt:P769 @:therapeutic_use * ; # significant drug interaction (P769)
150 wdt:P2868 @:pharmacologic_action * ; # subject has role (P2868)
151 wdt:P2868 @:therapeutic_use * ; # subject has role (P2868)
152 wdt:P279 @:pharmacologic_action * ; # subclass of (P279)
153 wdt:P279 @:therapeutic_use * ; # subclass of (P279)
154 wdt:P2868 @:mechanism_of_action * ; # subject has role (P2868)
155 wdt:P2175 @:symptom * # medical condition treated (P2175)
156 }
157

158 :molecular_function EXTRA wdt:P31 {
159 rdfs:label [@en] ;
160 wdt:P31 [wd:Q14860489] ;
161 wdt:P361 @:molecular_function * ;
162 wdt:P527 @:molecular_function * ;
163 wdt:P279 @:molecular_function * ;
164 }
165

166 :pharmaceutical_product EXTRA wdt:P31 {
167 rdfs:label [@en] ;
168 wdt:P31 [wd:Q28885102] ;
169 wdt:P3781 @:therapeutic_use * ; # has active ingredient (P3781)
170 wdt:P3781 @:pharmacologic_action * ; # has active ingredient (P3781)
171 wdt:P3781 @:chemical_compound * ; # has active ingredient (P3781)
172 wdt:P3781 @:medication * ; # has active ingredient (P3781)
173 wdt:P3780 @:therapeutic_use * ; # active ingredient in (P3780)
174 wdt:P3780 @:pharmacologic_action * ; # active ingredient in (P3780)
175 wdt:P3780 @:chemical_compound * ; # active ingredient in (P3780)

24 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

176 wdt:P3780 @:medication * ; # active ingredient in (P3780)
177 wdt:P4044 @:disease *; # therapeutic area (P4044)
178 }
179

180 :pharmacologic_action EXTRA wdt:P31 {
181 rdfs:label [@en] ;
182 wdt:P31 [wd:Q50377224] ;
183 wdt:P3780 @:pharmaceutical_product * ;# active ingredient in (P3780)
184 wdt:P3781 @:pharmaceutical_product * ;# has active ingredient (P3781)
185 wdt:P2175 @:disease * ; # medical condition treated (P2175)
186 wdt:P2176 @:disease * ; # drug or therapy used for treatment (P2176)
187 }
188

189 :protein_domain EXTRA wdt:P31 {
190 rdfs:label [@en] ;
191 wdt:P31 [wd:Q898273] ;
192 wdt:P279 @:protein_domain * ; # subclass of (P279)
193 wdt:P128 @:protein_domain * ; # regulates (molecular biology) (P128)
194 wdt:P527 @:protein_domain * ; # has part(s) (P527)
195 wdt:P361 @:protein_domain * ; # part of (P361)
196 }
197

198 :protein_family EXTRA wdt:P31 {
199 rdfs:label [@en] ;
200 wdt:P31 [wd:Q417841] ;
201 wdt:P527 @:protein * ; # has part(s) (P527)
202 wdt:P279 @:protein_family* ; # subclass of (P279)
203 wdt:P527 @:protein * ; # part of (P361)
204 }
205

206 :protein EXTRA wdt:P31 {
207 rdfs:label [@en] ;
208 wdt:P31 [wd:Q8054] ;
209 wdt:P129 @:protein * ; # physically interacts with (P129)
210 wdt:P681 @:protein * ; # cell component (P681)
211 wdt:P129 @:medication * ; # physically interacts with (P129)
212 wdt:P680 @:molecular_function * ; # molecular function (P680)
213 wdt:P681 @:cellular_component * ; # cell component (P681)
214 wdt:P681 @:anatomical_structure * ; # cell component (P681)
215 wdt:P682 @:biological_process * ; # biological process (P682)
216 wdt:P527 @:active_site * ; # has part(s) (P527)
217 wdt:P361 @:active_site * ; # part of (P361)
218 wdt:P527 @:protein_domain * ; # has part(s) (P527)
219 wdt:P361 @:protein_domain * ; # part of (P361)
220 wdt:P361 @:protein_family * ; # part of (P361)
221 wdt:P527 @:protein_family * ; # has part(s) (P527)
222 wdt:P527 @:active_site * ;
223 wdt:P361 @:active_site * ;
224 wdt:P361 @:binding_site * ;
225 wdt:P527 @:binding_site * ;
226 wdt:P129 @:chemical_compound * ; # physically interacts with (P129)

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

227 wdt:P129 @:medication * ; # physically interacts with (P129)
228 wdt:P702 @:gene * ; # encoded by (P702)
229 wdt:P703 @:taxon * ; # found in taxon (P703)
230 }
231

232 :sequence_variant EXTRA wdt:P31 {
233 rdfs:label [@en] ;
234 wdt:P31 [wd:Q15304597] ;
235 wdt:P3433 @:gene * ; # sequence variant (Q15304597)
236 wdt:P3355 @:chemical_compound * ; # negative therapeutic predictor for (P3355)
237 wdt:P3354 @:chemical_compound * ; # positive therapeutic predictor for (P3354)
238 wdt:P3354 @:medication * ;
239 wdt:P3355 @:medication * ;
240 wdt:P1057 @:chromosome * ; # chromosome (P1057)
241 }
242

243 :supersecondary_structure EXTRA wdt:P31 {
244 rdfs:label [@en] ;
245 wdt:P31 [wd:Q7644128] ;
246 wdt:P361 @:protein * ;
247 wdt:P361 @:protein_family * ;
248 wdt:P361 @:protein_domain * ;
249 }
250

251 :symptom EXTRA wdt:P31 {
252 rdfs:label [@en] ;
253 wdt:P31 [wd:Q169872] ;
254 wdt:P2176 @:chemical_compound * ; # drug or therapy used for treatment (P2176)
255 }
256

257 :taxon EXTRA wdt:P31 {
258 rdfs:label [@en] ;
259 wdt:P31 [wd:Q16521] ;
260 }
261

262 :therapeutic_use EXTRA wdt:P31 {
263 rdfs:label [@en] ;
264 wdt:P31 [wd:Q50379781] ;
265 }

Appendix B. Wikidata Dumps Dates

Appendix C. Genes + Taxons labeling and commenting ShEx

The ShExC shape expression that is used to extract Genes and Taxons subsets via WDSub based on labels,
descriptions, and aliases in four languages is as follow:

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX wd: <http://www.wikidata.org/entity/>

26 Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 9
The exact dates, size, and download URL of Wikidata dumps used in the flexibility experiments.

Dump Exact Date Size Download URL
2015 2015-06-01 4.5 Gb https://archive.org/download/wikidata-json-20150601/wikidata-20150601-all.json.gz
2016 2016-06-13 7.19 Gb https://archive.org/download/wikidata-json-20160613/wikidata-20160613-all.json.gz
2017 2017-08-21 15.7 Gb https://archive.org/download/wikibase-wikidatawiki-20170821/wikidata-20170821-all.json.gz
2018 2018-01-15 26.48 Gb https://archive.org/download/wikibase-wikidatawiki-20180319/wikidata-20180319-all.json.gz
2019 2019-01-21 48.14 Gb https://archive.org/download/wikibase-wikidatawiki-20190121/wikidata-20190121-all.json.gz
2020 2020-11-02 83.94 Gb https://archive.org/download/wikibase-wikidatawiki-20201102/wikidata-20201102-all.json.gz
2021 2021-05-31 93.93 Gb https://archive.org/download/wikibase-wikidatawiki-20210531/wikidata-20210531-all.json.gz
2022 2022-06-30 107.66 Gb https://archive.org/download/wikidata-20220630-all.json.gz/wikidata-20220630-all.json.gz

4 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
5 PREFIX : <http://example.org/>
6 PREFIX schema: <http://schema.org/>
7 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
8

9 start= @:gene OR
10 @:taxon
11

12 :gene EXTRA wdt:P31 {
13 rdfs:label [@en @es @fa @nl] ;
14 schema:description [@en @es @fa @nl] ;
15 skos:altLabel [@en @es @fa @nl] * ;
16 wdt:P31 [wd:Q7187] ;
17 wdt:P703 @:taxon * ;
18 }
19

20 :taxon EXTRA wdt:P31 {
21 rdfs:label[@en @es @fa @nl] ;
22 schema:description [@en @es @fa @nl] ;
23 skos:altLabel [@en @es @fa @nl] * ;
24 wdt:P31 [wd:Q16521] ;
25 }

Appendix D. Referenced Chemicals ShExes

D.1. Schema 1 (referenced instances)

This schema extract those instances of chemical compounds that their instances of (P31) fact has been referenced
by at least one reference URL (P854):

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 PREFIX ps: <http://www.wikidata.org/prop/statement/>
4 PREFIX p: <http://www.wikidata.org/prop/>
5 PREFIX prov: <http://www.w3.org/ns/prov#>
6 PREFIX pr: <http://www.wikidata.org/prop/reference/>
7

8

9 start = @<chemical_compound>

https://archive.org/download/wikidata-json-20150601/wikidata-20150601-all.json.gz
https://archive.org/download/wikidata-json-20160613/wikidata-20160613-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20170821/wikidata-20170821-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20180319/wikidata-20180319-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20190121/wikidata-20190121-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20201102/wikidata-20201102-all.json.gz
https://archive.org/download/wikibase-wikidatawiki-20210531/wikidata-20210531-all.json.gz

Hosseini Beghaeiraveri et al. / Wikidata subsetting: approaches, tools, and evaluation 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

10

11 <chemical_compound> {
12 wdt:P31 [wd:Q11173] ;
13 p:P31 {
14 ps:P31 [wd:Q11173] ; # is instance of (P31) chemical_compound (Q11173)
15 prov:wasDerivedFrom @<reference> # has a reference
16 }
17 }
18 <reference>{
19 pr:P854 .
20 }

D.2. Schema 2 (not referenced instances)

This schema extracts all instances of chemical compounds.

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 PREFIX ps: <http://www.wikidata.org/prop/statement/>
4 PREFIX p: <http://www.wikidata.org/prop/>
5 PREFIX pr: <http://www.wikidata.org/prop/reference/>
6 PREFIX prov: <http://www.w3.org/ns/prov#>
7

8

9 start = @<chemical_compound>
10

11 <chemical_compound> {
12 wdt:P31 [wd:Q11173] + ; # is instance of (P31) chemical_compound (Q11173)
13 }

	Introduction
	The significance of Subsets
	What Is a Subset?
	Objectives and Contribution

	Wikidata RDF Model
	Subsetting State of the Art
	General Purpose Subsetting Approaches
	Practical Tools

	Performance and Accuracy Evaluation
	Experimental Methodology
	Input Dump
	Subsetting Filters (Performance Test)
	Subsets Validation (Accuracy Test)
	Output Format

	Experimental Setup
	Host Machine
	Software Versions
	Experimental Run

	Performance Test Results
	Accuracy Test Results
	Discussion

	Flexibility Evaluation
	Gene Wiki Evolution
	Subsetting on Labels and Comments: Genes + Taxons
	Subsetting on References: Referenced Chemical Compounds

	Conclusions
	References
	Appendix A. Gene Wiki ShEx
	Appendix B. Wikidata Dumps Dates
	Appendix C. Genes + Taxons labeling and commenting ShEx
	Appendix D. Referenced Chemicals ShExes
	Schema 1 (referenced instances)
	Schema 2 (not referenced instances)

