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Abstract. Serverless technologies, also known as FaaS (Function as a
Service), are promoted as solutions that provide dynamic scalability,
speed of development, cost-per-consumption model, and the ability to
focus on the code while taking attention away from the infrastructure
that is managed by the vendor. A microservices architecture is defined by
the interaction and management of the application state by several inde-
pendent services, each with a well-defined domain. When implementing
software architectures based on microservices, there are several decisions
to take about the technologies and the possibility of adopting Serverless.
In this study, we implement 9 prototypes of the same microservice appli-
cation using different technologies. Some architectural decisions and their
impact on the performance and cost of the result obtained are analysed.
We use Amazon Web Services and start with an application that uses
a more traditional deployment environment (Kubernetes) and migration
to a serverless architecture is performed by combining and analysing the
impact (both cost and performance) of the use of different technologies
such as AWS ECS Fargate, AWS Lambda, DynamoDB or DocumentDB.
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1 Introduction

Cloud computing provides a model that enables application deployment with
expected lower costs and greater scaling flexibility than more traditional ap-
proaches. The Serverless approach [1] promises to allow developers to focus on
the code, forgetting to manage the complexity related to the infrastructure. By
combining the two previous concepts, a high degree of flexibility and speed of
reaction to possible changes, among other characteristics, in a development can
be achieved.

An important difficulty of entry arises when a company must make a transi-
tion between traditional legacy software and solutions that embrace these new
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models. The need to migrate from more traditional technologies to cloud-native
versions frequently appear. Thus, it is necessary to make architectural decisions
having the best possible information about the consequences of different alter-
natives.

The main goal of this research is to shed some light in this direction, by pro-
viding a comparison between different alternatives, perform system migrations
to better understand their architectural strengths and weaknesses, compare the
results in terms of cost and performance and highlight some critical points and
troubles of the migration processes. All the source code of the different migra-
tions is available in a github repository3.

In order to do that, we depart with a microservice based application that
has been implemented using a traditional approach with independent containers
deployed in Kubernetes4 and migrate it to alternative Serverless based technolo-
gies.

We chose Amazon Web Services (AWS)5 as a cloud provider because it is
the most widely used and well-known cloud provider, although closely followed
by Microsoft Azure and Google Cloud Platform [2]. Besides that, we used three
deployment technologies as the goal of the migrations: a more traditional one
such as Kubernetes (we understand Kubernetes as a more traditional solution
compared to a serverless approach, with the adjective ”traditional” being some-
what relative), a fully Serverless one such as AWS Lambda and one between both
approaches such as ECS Fargate To add a persistence tier, we used two different
services: AWS DocumentDB and DynamoDB , the first of them is not Serverless
at all (The standard DocumentDB instances require one to provision and man-
age its own server instances, which is why they are not considered Serverless)
and the second one fully Serverless. On the other hand, we chose java with the
Spring Framework because it was the language in which the initial system was,
each language presents different features [3], [4].

The main contribution of this paper is to offer a comparison in terms of costs
and performance of a microservices based prototype implemented with 9 different
technology possibilities that combine traditional with Serverless approaches. We
consider that both the source code and the results can be helpful to have a better
undestanding of the consequences of adopting some of those technologies.

The structure of the paper is the following. Section 2 describes the architec-
ture of the initial application, section 3 describes the prototypes that have im-
plemented using different approaches, section 5 compares the costs and section 6
compares the performance. Section 7 presents a discussion which is followed by
a description of the related work in section 8 and conclusions and future work
in section 9.

3 https://github.com/catedradxc/serverlessStudy/
4 https://kubernetes.io/
5 https://aws.amazon.com/
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2 Initial application

We chose a microservices based prototype that was already available as a start-
ing point for our study6. One of the reasons to chose that application was its
simplicity with the intention of demonstrating that, even though it is a simple
solution, some of the difficulties that would be encountered to a greater extent
with a more complex example still arise.

Fig. 1. Initial application architecture

The selected application is presented in Figure 1 and consists of an e-commerce
solution, mainly compound of three services with functionality and an extra
service to make the orchestration of the three others. All the services are self-
contained and individual, offering an API through of which the other services
send messages. The three principal services will survive along the versions and
migrations of the system:

– Catalogue service: It manages the operations related with the products.
– Customer service: It manages everything related with customers.
– Order service: It involves all in relation to orders.

The fourth service before mentioned, consists fundamentally in an Apache
server to redirect the requests to each corresponding service of the three last.
This Apache service will be replaced when migrating the application to a more
managed technology.

3 Prototypes and processes

Starting from the initial application already outlined, several migration or adap-
tation processes have been carried out to enable the system to run on other
platforms. The results of these processes are divided into 3 scenarios, each with

6 The starting prototype is available at: https://github.com/ewolff/

microservice-kubernetes
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3 prototypes: the first of them consists of migrating to another platform while
maintaining, as far as possible, the persistence mechanism used by the original
version. This persistence mechanism is based on an in-memory database. The
second one consists of adding a persistence layer to the versions of the first
scenario, that is to say, delegating the management of the system’s state to a
persistence service, avoiding the in-memory data base. Thus analysing the im-
pact of one or another data storage service. The third scenario seeks to complete
the combination between the technologies used and the data storage services.
Thus, the resulting prototypes are the following:

3.1 AWS EKS

For this first version, it didn’t require much adaptation work to enable the system
to be deployed using Elastic Cloud Kubernetes (EKS) as the original application
was already set up for a Kubernetes environment. The resulting architecture is
the same as the initial application shown in Figure 1.
The process for deployment and configuration includes creating the Kubernetes
cluster in EKS with the appropriate permissions, and creating the node group
where the system will be deployed. The chosen EC2 instance type to host the
node group is t3.Small, as it is the smallest one with enough network interfaces.

3.2 ECS Fargate

As a technology that sits in the middle ground between more traditional com-
puting and FaaS, it is often chosen as a migration target for legacy software
towards a more flexible, scalable, and self-managed technological framework.
As that middle ground, many of the components involved in a Kubernetes de-
ployment, for example, are reusable and remain useful in an architecture designed
to be deployed on ECS Fargate. Although many other elements, such as those
related to service orchestration, are replaced by other AWS-specific components
like load balancers.
In our case, the first service, which consisted of an Apache server, will be re-
placed by a load balancer with rules configured to perform the same function,
redirecting incoming requests to the corresponding service. The final architec-
ture of this prototype can be seen in Figure 2
Regarding changes to the code and/or its rewriting, there is no need to make any
changes starting from the initial version that was containerized and designed for
Kubernetes. Each image will be deployed on a container within an ECS Fargate
task. The tasks employed are configured with 0.5 GB of memory and 0.25 vCPU,
and the containers with a flexible memory limit of 128 MiB.
This version has the issue that tasks are not stateless, making it difficult to du-
plicate for horizontal scaling. This problem is solved as soon as data management
is delegated to another component.
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Fig. 2. ECS fargate architecture

3.3 AWS Lambda

As the final main approach, the use of AWS Lambda service along with API
Gateway was chosen as the most widely accepted serverless architecture ap-
proach [5].

The back-end will be provided as lambda functions wrapped in an API, and
the frontend will be rebuilt as an SPA hosted in an S3 bucket. As Java with
Spring are the technologies chosen, it was necessary to rebuild each service to
adapt to the schema (handlers instead of controllers) used by AWS Lambda,
while keeping the user interface separate.

This process could be costly and non-trivial depending on the size of the
service to be ported and the complexity of its logic. In our case, even though the
services are relatively small and simple, the process required almost a complete
rewrite.

If the services prior to migration were larger in size, it would be necessary to
split them into functional sections of an appropriate size for a lambda function
[6]. This includes dividing the management of the information that these services
handle.

The architecture of this prototype can be seen in Figure 3. The configuration
of Lambda functions used is: 512 MB of memory, 512 MB of ephemeral storage,
and Java 11 (corretto) as language.

Due to the stateless nature of lambda functions and their scaling approach,
the fact that these functions manage data in this first solution makes it not a
functional prototype. Again, as soon as the management of the system informa-
tion is delegated to another component, this problem would be solved.
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Fig. 3. AWS lambda architecture

3.4 AWS EKS with DocumentDB

A necessary step in the journey to improve the architecture managed in terms of
flexibility and scalability, among others, is to add a persistence layer on which to
delegate data handling and separate it from logic. The services chosen for achieve
that challenge are DocumentDB and DynamoDB. For this solution, Docum-
netDB will be used.

Due to DocumentDB’s compatibility with MongoDB, this service is widely
used for migrating to cloud environments. The changes in the code required to
integrate the initial AWS EKS solution with DocumentDB are not too many, and
the deployment procedure is the same except for the creation of the DocumentDB
cluster. As for the DocumentDB configuration, version 4.0 will be used with a
single instance of type db.t3.medium.

The resulting architecture can be seen at Figure 4

3.5 AWS EKS with DynamoDB

In this case, the prototype combines AWS EKS with DynamoDB, starting from
the initial version of AWS EKS prepared for deployment on this service.
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Fig. 4. EKS + DocumentDB architecture

To enable the integration of these two services, it is necessary to configure
the DynamoDB tables to host the system’s data. The necessary changes in the
code are related to accessing the data from the 3 main services. Additionally, it
is necessary to provide the appropriate permissions to the EKS worker nodes for
proper integration.

The AWS EKS configuration used is the one seen before. For DynamoDB,
the configuration used is the default, with read and write capacity values of 5
RCU and WCU respectively. Using provisioned mode with autoscaling enabled.

3.6 Others

The last four prototypes combine technologies already discussed in previous ones.
They employ similar configurations for all services and without any particularly
noteworthy aspect but doing different combinations. These four versions are:

– ECS Fargate with DynamoDB

– AWS Lambda with DynamoDB

– ECS Fargate with DocumentDB

– AWS Lambda with DocumentDB
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4 Tests and metrics measured

In order to validate each of the prototypes developed on one hand, and measure
the performance of each of them on the other hand, it is necessary to build a
series of tests.

4.1 Validation testing

To guarantee the validity of the prototypes used for the comparison, an auto-
mated test-suite has been designed using Selenium. These tests ensure that all
functionalities work from the point of view of a user.

4.2 Performance testing

One of the main criteria when comparing architectures is their performance.
Thus, in order to determine the performance of each prototype, a series of per-
formance and stress tests are designed. The objectives of these tests are:

– To determine the performance of each of the prototypes. This performance
will be measured in terms of latency or response time.

– To determine the load limits supported by each of the prototypes.
– To compare the different technologies used to create the system versions.

As the tests are carried out in a research context, there are no predefined per-
formance standards that the systems must meet. The tools chosen were JMeter
for load testing and AWS CloudWatch for collecting internal metrics.

All tests are repeated a total of 3 times, with the displayed result being the
average value of the three repetitions. The performance tests will be carried out
with several user loads and a constant ramp-on of 30 minutes. For stress testing,
the loads will also vary, and the ramp-on will be between 20 and 30 seconds
causing sudden load increments. For both types of tests, the metrics measured
will be average latency, error %, number of users and ramp-on. All the JMeter
scripts could be find on the GitHub repository.

5 Costs analysis

Another key aspect in choosing architectures is the cost of each one. AWS has
services whose costs are primarily calculated in two ways. On one hand, we have
the traditional cost model of paying for infrastructure rental time in a provisioned
resource model. On the other hand, some services calculate their price based on
consumption, a characteristic model of Serverless computing.

To enable comparison between technologies that employ the two defined cost
models, it is necessary to establish how these costs will be calculated for com-
parison. Firstly, the currency used will be the euro €. For solutions calculated
using the traditional hardware rental model, costs will be calculated monthly.
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For versions whose services allow the consumption-based cost model, a constant
load of 5 users per second will be assumed, which equates to 13 million requests
per month approximately.

Prototype mensual cost (€)

AWS EKS 92

ECS Fargate 55.8

AWS Lambda 17.7

AWS EKS + DocumentDB 157.14

ECS Fargate + DocumentDB 120.94

AWS Lambda + DocumentDB 82.84

AWS EKS + DynamoDB 93.53

ECS Fargate + DynamoDB 57.33

AWS Lambda + DynamoDB 19.23
Table 1. Total costs for each prototype

Starting with solutions based on AWS EKS, this service incurs a cost of 0.1
€ per hour, to which the cost of the instance, which amounts to €19 per month,
is added. The use of AWS EKS amounts to a total of €92 per month.

Continuing with solutions based on ECS Fargate, which use 3 tasks whose
cost is €31.09 per month, 1 load balancer whose cost is €19.7 per month, and
an S3 bucket whose access costs approximately €5 per month depending on
the requests. The use of this architecture amounts to a total cost of €55.8 per
month.

As a third approach, solutions based on AWS Lambda with API Gateway,
both services with a usage-based cost model. Assuming a load of 13 million
requests per month, the total cost will be approximately €17.7 depending on
the size of the requests and the execution time of the Lambda functions.

Using DocumentDB with the configuration already mentioned results in a
monthly cost of €65.14. On the other hand, using DynamoDB with the men-
tioned configuration and assuming the monthly load again results in a cost of
approximately €1.53.

Thus, summarizing, in table 1 or in the Figure ?? you can see the total cost
of each of the solutions.

6 Performance analysis

As previously mentioned, the performance of an architecture is always relevant
when evaluating different designs. The following results were reported by the
load and stress tests on the different prototypes built. The data displayed for
each version is the results reported in the top 3 load tests that each prototype
supported.
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Prototype
Performance testing results Stress testing results
latency(ms) %error #users latency(ms) %error #users

AWS EKS
195 0 1000 220 0.74 200
161 0.05 1800 943 19.25 400
367 0.5 2500 668 23.07 500

ECS Fargate
468 0.5 1000 2929 0 200
307 0 2000 8982 4.67 400

10292 48.08 5000 16170 3.62 500

AWS Lambda
167 0 2000 87 0 400
216 0 5000 77 0 500
196 0 10000 87 0 1000

AWS EKS + DocumentDB
61 0 1800 63 2.83 400
60 0 2500 54 21.91 500
61 0 10000 65 34.98 1000

ECS Fargate + DocumentDB
91 0 1000 189 0 500
147 0 2000 852 0.02 1000
119 0 5000 6058 1.44 2500

AWS Lambda + DocumentDB
323 0 2000 9189 0 500
339 0 5000 12469 0 1000
261 0 10000 537 62.26 2000

AWS EKS + DynamoDB
55 0 1800 56 0 400
55 0 2500 56 0 500
227 1.97 10000 59 27.31 1000

ECS Fargate + DynamoDB
88 0 2000 3787 0 500
88 0 5000 4482 3.45 1000

15872 46.81 10000 1183 47.5 2500

AWS Lambda + DynamoDB
219 0 1000 1950 0 400
440 0 2000 6560 0 500
5807 0 5000 3319 0 1000

Table 2. AWS EKS testing results

In the first 3 rows (AWS EKS, ECS Fargate and AWS Lambda), the proto-
types do not have a data persistence layer.

The results of the AWS EKS version show that the sustained load limit over
time for this system is between 20 and 30 simultaneous users. For this load, AWS
CloudWatch shows processor and memory usage percentages of 60% and 80%,
respectively.

The results of the ECS Fargate version are similar to those obtained by the
previous version, although slightly worse in terms of sustained load over time.

It is necessary to remember that the AWS Lambda version is not functional
as it does not store modified information except in the memory of the lambda
functions themselves. For that reason, the latencies obtained by this version are
so positive, because access to the data is much faster. Still, the auto-scaling
capacity of the AWS Lambda function service is clearly appreciated.

In the second scenario, prototypes that integrate the DocumentDB service
as a persistence layer are tested.
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Apparently, the impact of delegating data storage and access to an external
persistence layer, in this case, DocumentDB, is extremely positive in terms of the
latencies experienced and the load supported by the application. This prototype
handled the tests with 10,000 users with a 0% error rate very solidly.

The performance results of the ECS Fargate solution with DocumentDB are
slightly worse, although still quite positive. The ability of this latest version to
handle sudden increases in users is noteworthy. For the performance tests, the
CPU and memory usage of the ECS Fargate tasks involved in the system is 0.3%
and 0.79% respectively, showing that the limiting factor is the memory of the
tasks.

The high latencies experienced in the performance tests by the AWS Lambda
with DocumentDB version are due to the time it takes AWS to spin up the
necessary Lambda function instances to handle the demand (cold start) and to
an architecture in which a request during its life cycle has to go through three
services before being answered.

In the third scenario, the technologies already seen are combined with another
data persistence service, DynamoDB. The AWS EKS version with DynamoDB
reports good results by passing the tests with 10000 users without major diffi-
culties, which proved challenging for other prototypes.

The prototype based on ECS Fargate with DynamoDB did not pass the
performance tests carried out with 10000 users. Once again, the catalog service
experienced outages causing a significantly high error rate. The cause of the
mentioned outages, once again, turns out to be the memory of the ECS Fargate
task.

The solution based on AWS Lambda with DynamoDB delivers a 0% error
rate. The significant increase in latency for the tests with 5000 users is justified
by the time it takes for DynamoDB and AWS Lambda to provision itself when
there is a surge in users.

7 Discussion

As a summary of the analysis, table 3 shows the average latencies obtained by
the best prototypes in performance tests with 10000 user load. The best per-
formance solution was based on AWS EKS with DocumentDB, followed closely
by the solution based on AWS EKS with DynamoDB and AWS Lambda with
DocumentDB.

The superiority of AWS EKS service in terms of performance may be due to
the provisioning time of AWS Lambda required to handle the load. The proto-
type based on AWS Lambda with DynamoDB has latencies that are too high
due to the provisioning of DynamoDB and the cold-start of AWS Lambda to be
among the best. It demonstrates that one disadvantage of automatic scaling is
that it is not instantaneous, and its impact on performance must also be taken
into account. It is important to say that AWS Lambda versions could have a
better performance by changing the used language to more properly one instead
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of java or using the AMD architecture. The AWS EKS-based solution offers bet-
ter latencies because it has provisioned resources and does not require time to
scale up.

Performance testing summary

Prototype Latency (ms) Error %

AWS EKS + DocumentDB 61 0

AWS EKS + DynamoDB 227 1.97

AWS Lambda + DocumentDB 261 0
Table 3. performance testing summary

Regarding the monthly cost of each prototype, there is a correlation between
Serverless based solutions and those that represent lower costs. The cheapest
prototype is based on AWS Lambda with DynamoDB.

8 Related work

Firstly, a survey on Serverless is [7], which provides a summary of the technol-
ogy situation and its explanation. As far as we know, the publication that is
more similar to our work is [8], which is focused on application migration, where
the authors migrate 4 complex microservices-based applications to serverless.
One difference being that work and ours is that it focuses more on the process,
explaining architectural patterns and giving some tips while our work focuses
on the impact of those architectural decisions. Another study on migrations is
[9], in which 4 simple Serverless based applications are migrated across 3 cloud
providers, focusing on aspects of the lock-in problem. Another article similar to
ours is [10], in which Minh Vu et al migrate a system to Serverless using AWS
Lambda, measuring its performance, scalability, and costs involved. Addition-
ally, they experiment on mitigating the cold start of lambda functions. [11] is a
book written by Edson Yanaga focused on migrating monolithic applications to
microservices but with a focus on the data and system state perspective.

On the other hand, there are some papers that compare architectures like,
for example, [12], in which the authors compare a monolithic architecture and
microservices based architecture in terms of performance, strengths, and weak-
nesses of each. Another example is [13], in which Fan et al compare a service-
based architecture and a Serverless architecture in terms of latency, cost, scal-
ability, and reliability, concluding that both have their advantages in specific
scenarios and that neither is suitable for all scenarios. [14] compares 3 versions
of the same application, one monolithic, another based on microservices oper-
ated by the cloud customer, and another based on microservices operated by
the cloud provider, analyzing the impact on the infrastructure cost, concluding
that the microservices architecture can significantly reduce the infrastructure
cost. Another publication by BBVA Labs that focuses on serverless costs is [15],
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where its usage and the usage of EC2 are analyzed in comparison, as well as the
parameters that most affect these decisions.

In addition to this, some publications related to both Serverless and mi-
croservices architecture are [5], in which Peter Sbarski deeply discusses aspects
of serverless such as the most important architectural patterns, authentication
and authorization among others, providing several examples of real applications.
[6], where Ian Miell exposes the limits to consider when building Lambda func-
tions with AWS Lambda regarding the physical limits of the service. [16] in which
the evolution of the microservices architecture is analyzed, and the challenges of
choosing this architecture in the future are reflected upon.

9 Conclusions and future work

Before applying the aforementioned comparison criteria to the previous scenar-
ios, it is necessary to highlight that each of these possible architectures and
technologies offer advantages and disadvantages that may be beneficial or detri-
mental for a specific problem. Ultimately, the choice between them is a trade-off
with inherent problems and virtues, and such decisions should be made solely
by weighing the project’s needs and available resources.

Despite the basic nature of the starting system, the migration processes car-
ried out provide certain ideas as a conclusion. The main idea that stands out is
that any transformation process in a system’s architecture is not a trivial task
and, as such, presents a range of challenges and difficulties to be solved. Other
notable issues are that auto-scaling is not free in terms of both cost and perfor-
mance, and that it is always beneficial to assign a single responsibility to each
component of the architecture for its scaling.

Depending on the initial and target architectures, the necessary process will
require more or fewer resources and time, even requiring partial or complete
rewriting of the application.

It does not make sense to choose a prototype as the best since, as mentioned
before, the appropriate architecture depends on the specific needs of the problem
to be solved and other factors that have not been studied for these solutions such
as operational complexity, security, etc.

With regards to future work, we are considering to extend this research to
compare the prototype implementations using different cloud providers. Another
possibility would be to use the tools and scripts that we have used in this study
to compare more complex or even real projects.
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