
Redesign of the validation framework in LinkML
Deepak R. Unni1, Andra Waagmeester2, and Jose Emilio Labra Gayo3

1 SIB Swiss Institute of Bioinformatics, Switzerland 2 Micelio, Belgium 3 WESO Lab, University of
Oviedo, Spain

BioHackathon series:
DBCLS BioHackathon 2023
Kagawa, Japan, 2023
R4

Submitted: 17 Jul 2023

License:
Authors retain copyright and
release the work under a Creative
Commons Attribution 4.0
International License (CC-BY).

Published by BioHackrXiv.org

Background
LinkML (Moxon et al.) is a data modeling language that can be used to describe the structure
and semantics of data from a specific domain. LinkML lets you manage various levels of
semantic expressivity, depending on the use-case at hand. As a result, data models expressed
in LinkML can be utilized with various (relational and non-relational) data stores.
There are two parts to the LinkML ecosystem:

• the modeling language: a vocabulary that can be used to define data models
• the tooling: a suite of tools for generating technology-specific artifacts from data

models
As with any data ecosystem, there is also a need for tools that support validation of data.
Currently, the LinkML ecosystem provides a simple validation utility that can be used to
validate data against a LinkML schema. But this validation utility makes use of JSON Schema
for performing validation. While this does cover several validation scenarios, it is still limited
in its applicability and scope. Thus, there is a need for a data validation utility that is flexible
and can grow organically according to current and future use-cases.
The goal of this project was to improve on LinkML’s validation framework by adopting certain
design principles:

1. Schema Agnostic: The validator must be schema agnostic and must not make any
assumptions on the incoming data outside of the scope of LinkML metamodel i.e. the
validator should run for any given LinkML schema

2. Plugin Architecture: Each type of validation should be its own plugin. This ensures that
validation scenarios are atomic, well documented, and can be configured for appropriate
use-cases. Plugins can be internal or external, with both types supported

3. Extendable Parsers: The validator should be able to parse various types of data formats
(and data stores) and should be configurable such that the choice of the validator is left
to the user with sensible defaults applied where required

4. Easy to Configure: The plugins, and by extension, the validator should be configurable
at runtime such that the plugin and validator behavior can be tweaked for various inputs
or use-cases

5. Parseable Validation Messages: The validator should return validation results and
reports that are concise, easy to parse, and conforms to a well defined structure. Since
the validation framework is aware of the LinkML metamodel, it can also make use of the
native LinkML validation schema to ensure that the structure of the validation reports
are aligned and compatible with the LinkML ecosystem

Following the aforementioned design principles will ensure flexibility and sustainability of the
validation tool.

Deepak R. Unni et al., LinkML Validator Redesign (2023). BioHackrXiv.org 1

https://2023.biohackathon.org/
https://github.com/biohackathon-japan/bh23-linkml-validator-redesign
https://creativecommons.org/licenses/by/4.0/
http://biohackrxiv.org/
https://linkml.io
https://biohackrxiv.org/


Outcomes

Redesign of the Validation
We approach the redesign of the existing LinkML validation tool by implementing the following
components: Models, Parsers, Validation Plugins, and Validator. The design of these compo-
nents are highlighted in the following sections and how these components interact are captured
in Figure 1.

Figure 1: Redesign of the validator with its components

Models

One of the key design principles was to have well structured and parseable validation messages.
This is to ensure that the validation results provided by the validator can be acted upon by
downstream tools. Thus, we define two classes for capturing the outcome of validation:

• ValidationResult: A Validation Result is an object that holds information about a
validation error as reported by a validation plugin. A validation plugin may yield more
than one Validation Result, depending on the severity of the error encountered during
validation.

• ValidationReport: A Validation Report is an object that holds information about all
validation errors (i.e. Validation Results) for a given object.

The ValidationResult and ValidationReport classes were adapted from the validation
models defined in linkml-runtime. As the redesign progresses, the classes will undergo modi-
fications to better accommodate the information required for specific use-cases. Eventually
there will be a harmonization of model such that the validation models in linkml-runtime will
be the same as the one used by the linkml validator.

Parsers

Parsers are classes that can parse data from a given file format or a data store. They are
an abstraction that enables fetching records defined in the file (or store). These parsers are
defined such that they are capable of streaming records where consumers of these parsers can
iterate over a stream of records instead of handling the incoming data in bulk.
The parsers can optionally do some additional restructuring of the incoming data to make it
better suited for validation by the validation plugins. This can be as a result of overcoming
limitations with the underlying file format or data store.

Deepak R. Unni et al., LinkML Validator Redesign (2023). BioHackrXiv.org 2

https://github.com/linkml/linkml-runtime
https://biohackrxiv.org/


Validation Plugins

A Validation Plugin is a class that is responsible for accepting records as input and performing
a set of operations on the input. The validation plugin is aware of the provided schema and is
responsible for generating the artifacts that it needs for performing validation. There is a base
class called BasePlugin which defines a collection of abstract methods that all subclasses must
implement. This is to ensure that the methods for all plugins are consistent and behave the
same way. Validation Plugins are responsible for returning one or more instances of Validation
Result where each instance is describing an error encountered during validation in sufficient
detail. The plugins should, if possible, report the context where the error was found via the
Validation Result.
Validation Plugins can be internal or external. Internal validation plugins are the ones defined
in the linkml repository where as external validation plugins are the custom validation plugins
defined by a user for their validation needs.

Validator

The Validator class is the common interface for invoking the validation of a given input data
against a given input schema. The class defines two methods that are exposed via the CLI:

• validate: Given an object, a schema YAML, and a set of validation plugins - validate
the object against the given schema by running each validation plugin on the data object
and return a Validation Report for the object.

• validate_file: Given a file (that contains one or more objects), a schema YAML, and
a set of validation plugins - validate all objects against the given schema by running
each validation plugin on the objects and returning a Validation Report for each object
from the file.

There can be additional methods in the Validator class but these may or may not be apparent
or exposed via the CLI.
The Validator class defines a set of default plugins for various input formats to make it easy
for users to use the Validator. But these defaults can be modified at runtime.

Future work
The work described in this report is a start to the redesign of the linkml validation tool. As
a first pass, the design highlighted above yields good promising outcomes and provides a
foundation to build a flexible and configurable validation framework in linkml.
Moving forward we would like to achieve the following:

• Add support for commonly requested input formats: This ensures that commonly
encountered file formats are supported via the CLI and sufficient examples are provided
via documentation

• Add support for commonly used validation scenarios: This ensures that commonly
used validation scenarios are supported via the CLI and sufficient examples are provided
via documentation

• Finalize and document the flexible aspects of the validator: This ensures that the
user is aware of the various ways they can tweak and configure the new validation tool
such that they can accommodate their validation scenarios

• Define a common API specification to invoke the validator: This ensures that
other tools, like the new shex-rs validator, can follow the same API specification and
thus provide a common interface for users

• Focus on scalability: This ensures that the validation can be performed on large input
data in a scalable manner

Deepak R. Unni et al., LinkML Validator Redesign (2023). BioHackrXiv.org 3

https://biohackrxiv.org/


Discussion
A flexible framework for performing validation of data against any given LinkML-based schema
can have a positive impact on the LinkML community. New (and existing users) can adopt
the validation framework and extend it for their needs to ensure data quality, data consistency,
and also perform checks that may not be possible (or easy) in the context of Pydantic,
JSONSchema, or Shape Expressions. The work highlighted can serve as a useful utility for data
integration and validation pipelines that need a reliable way to identify data inconsistencies
and report them in a way that is actionable. The work outlined is an addition to the rapidly
developing LinkML ecosystem and collectively aims to make schema representation, data
representation, and data harmonization easier and manageable - especially in the context of
biological and biomedical data.

Acknowledgements
We are grateful to the organizers of the BioHackathon 2023 for supporting the authors and
providing an opportunity to get together for this hackathon. We would like to thank the
fellow participants at BioHackathon 2023 for their collaboration and constructive advice, which
greatly influenced our project. We are also grateful to the LinkML developers - especially
Patrick Kalita - and the wider community for being active, engaged, and constructive with
their requirements and feedback.

References
1. Moxon, S., Solbrig, H., Unni, D., Jiao, D., Bruskiewich, R., Balhoff, J., Vaidya, G.,

Duncan, W., Hegde, H., Miller, M., Brush, M., Harris, N., Haendel, M., & Mungall,
C. (2021). The Linked Data Modeling Language (LinkML): A General-Purpose Data
Modeling Framework Grounded in Machine-Readable Semantics. CEUR Workshop
Proceedings, 3073, 148-151.

Deepak R. Unni et al., LinkML Validator Redesign (2023). BioHackrXiv.org 4

https://biohackrxiv.org/

	Background
	Outcomes
	Redesign of the Validation
	Models
	Parsers
	Validation Plugins
	Validator


	Future work
	Discussion
	Acknowledgements
	References


