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Abstract. Knowledge Graphs have been successfully adopted in recent
years, existing general-purpose ones, like Wikidata, as well as domain-
specific ones, like UniProt. Their increasing size poses new challenges
with regards to their practical usage. As an example, Wikidata has been
growing the size of its contents and their data since its inception making
it difficult to download and process its data. Although the structure
of Wikidata items is flexible, it tends to be heterogeneous: the shape
of an entity representing a human is distinct from that of a mountain.
Recently, Wikidata adopted Entity Schemas to facilitate the definition of
different schemas using Shape Expressions, a language that can be used
to describe and validate RDF data. In this paper, we present an approach
to obtain subsets of knowledge graphs based on Shape Expressions that
use an implementation of the Pregel algorithm implemented in Rust. We
have applied our approach to obtain subsets of Wikidata and UniProt
and present some of these experiments’ results.
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1 Introduction

Knowledge graphs have emerged as powerful tools for representing and organiz-
ing vast amounts of information in a structured manner. As their applications
continue to expand across various domains, the need for efficient and scalable
processing of these graphs becomes increasingly critical.

Creating subsets of knowledge graphs is a common approach to tackle the
challenges posed by their size and complexity. Such subsets are essential not
only to reduce computational overhead but also to focus on specific aspects of
the data.

In this paper, we explore the synergy between two essential concepts in
the field of graph processing: Shape Expressions (ShEx) [10] and the Pregel
model [12]. Shape Expressions allow to describe and validate knowledge graphs
based on the Resource Description Framework (RDF). These expressions have
gained significant adoption in prominent projects like Wikidata. On the other
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hand, Pregel is a distributed graph processing model designed for efficiently
handling large-scale graphs across multiple machines.

Motivated by the need for handling massive graphs in a scalable way, we pro-
pose the concept of creating subsets of knowledge graphs using Shape Expres-
sions. By selecting relevant portions of the graph, we can focus computational
efforts on specific areas of interest, leading to enhanced efficiency and reduced
processing times.

Furthermore, we delve into the capabilities of the Pregel algorithm and its
potential for distributed graph processing. We emphasize that the scalability of
graph computation can be achieved not only by increasing the number of ma-
chines but also by optimizing the use of multi-threading solutions to leverage a
single machine’s capabilities. Hence, our solution aims for distributing the prob-
lem across multiple threads of a single-node machine. This is, a multi-threaded
Pregel. The idea is not only to provide a solution that can run on any hard-
ware efficiently but also to explore the capabilities of Rust for enabling some
performance gains regarding single-node computation.

The main contributions of this paper are the following:

1. We present an approach for subset generation of Knowledge Graphs based
on Shape Expressions using the Pregel algorithm.

2. We have implemented the previous approach in Rust.
3. We have applied it to generate subsets of Wikidata and UniProt and present

some optimizations and results.

The structure of this document is as follows: Section 2 presents the key con-
cepts required for describing the foundations of the problem to be solved. Next,
Section 3 explains the most important algorithms for creating Knowledge Graph
subsets. After that, in Section 4, the novel approach introduced by this paper is
described. Section 5 depicts the experiment for analyzing how the Pregel-based
Schema validating algorithm behaves. Next, Section 6 establishes the alterna-
tives and work related to what is presented in the document. And lastly, Section
7 contains the conclusions and future work.

2 Background

2.1 Knowledge graphs

Definition 1 (Knowledge Graph [3,5]). A Knowledge Graph is a graph-
structured data model that captures knowledge in a specific domain, having nodes
that represent entities and edges modeling relationships between those.

Definition 1 is a general and open description of a Knowledge Graph. There
are several data models for representing Knowledge Graphs, including Directed
edge-labeled and Property Graphs [5], to name a few. In this paper, we will focus
on RDF-based Knowledge Graphs, a standardized data model based on directed
edge-labeled graphs [5].



Using Pregel to create Knowledge Graphs Subsets 3

RDF-based Knowledge Graphs The Resource Description Framework (RDF)
is a standard model for data interchange on the Web. It is a W3C Recommenda-
tion for representing information based on a directed edge-labeled graph, where
labels are the resource identifiers. The idea behind the RDF model is to make
statements about things in the form of subject-predicate-object triples. The sub-
ject denotes the resource itself, while the predicate expresses traits or aspects
of it and expresses a relationship between the subject and the object, another
resource. This linking system forms a graph data structure, which is the core
of the RDF model. If the dataset represents Knowledge of a specific domain,
the Graph will be an RDF-based Knowledge Graph. There are several serial-
ization formats for RDF-based Knowledge Graphs, including Turtle, N-Triples,
and JSON-LD. Its formal definition is as follows:

Definition 2 (RDF-based Knowledge Graph [3]). Given a set of IRIs I,
a set of blank nodes Band a set of literals L, and RDF-based Knowledge Graph
is defined as a triple-based graph G = ⟨S,P,O, ρ⟩ where S ⊆ I ∪ B, P ⊆ I,
O ⊆ I ∪ B ∪ L, and ρ ⊆ S × P ×O.

Example 1 (RDF-based Knowledge Graph of Alan Turing). Alan Turing (23
June 1912 – 7 June 1954) was employed by the government of the United
Kingdom in the course of WWII. During that time he invented the computer
for deciphering Enigma-machine-encrypted secret messages, namely, the Bombe
computer. Additional information about relevant places where he lived is also
annotated, including his birthplace, and the place where he died.

I = { alanTuring, wilmslow, GCHQ, unitedKingdom, warringtonLodge, bombe
town, computer, dateOfBirth, placeOfBirth, employer, placeOfDeath,
country, manufacturer, instanceOf }

B = { ∅ }
L = { 23 June 1912 }
ρ = { (alanTuring, instanceOf , Human),

(alanTuring, dateOfBirth, 23 June 1912),
(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, placeOfDeath, wilmslow),
(alanTuring, employer, GCHQ),
(bombe, discoverer, alanTuring),
(bombe, manufacturer, GCHQ),
(bombe, instanceOf , computer),
(wilmslow, country, unitedKingdom)
(wilmslow, instanceOf , town)
(warringtonLodge, country, unitedKingdom) }

Through tools like RDFShape it is possible to visualize the RDF-based
Knowledge Graph of Alan Turing.

http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/Q3957
http://www.wikidata.org/entity/Q11742076
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/P176
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P61
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P176
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q11742076
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q3957
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
https://rdfshape.weso.es/link/16902825958
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2.2 ShEx

Shape Expressions (ShEx) were designed as a high-level, domain-specific lan-
guage for describing RDF graph structures. The syntax of ShEx is inspired by
Turtle and SPARQL, while the semantics are motivated by RelaxNG and XML
Schema. In this manner, Shape Expressions specify the requirements that RDF
data graphs must fulfill to be considered conformant, they allow systems to estab-
lish contracts for sharing information; through a common schema, systems agree
that a certain element should appear. This pattern behaves similarly to inter-
faces in the object-oriented paradigm. Shapes can be specified using a JSON-LD
syntax or a human-friendly concise one called ShExC.

Example 2. The following ShEx schema describes the Person Shape Expression,
which is used to validate the RDF-based Knowledge Graph of Alan Turing (see
example 1). This example can be found in RDFShape but using ShExC serial-
ization.

L = { Person, Place, Country, Organization, Date }
δ(Person) = { placeOfBirth−−−−−−−−−→ @Place,

dateOfBirth−−−−−−−−→ @Date,
employer−−−−−−→ @Organization }

δ(Place) = { country−−−−−→ @Country }
δ(Country) = { }

δ(Organization) = { }
δ(Date) ∈ xsd:date

2.3 Pregel

Pregel (Parallel, Graph, and Google) is a data flow paradigm and system cre-
ated by Google to handle large-scale graphs. Even though the original instance
remains proprietary at Google, it was adopted by many graph-processing sys-
tems, including Apache Spark. For a better understanding of Pregel, the idea is
to think like a vertex [11]; this way, the state of a given node, will only depend
on those of its neighbors, those nodes connected to it by an outgoing edge (see
definition 4). Hence, by thinking like a vertex, the problem is divided into several
sub-problems: instead of dealing with a huge graph, smaller graphs are the way
to go: a vertex and its neighbors. This is especially crucial for huge graphs, with
millions of entities and hundreds of relationships for each node.

The series of steps that the Pregel framework follows to process a graph are
depicted in Figure 1. The execution starts by sending the initial messages to the
vertices at iteration 0. Then, the first – actual – superstep begins. In our current
implementation, this loop will last until the current iteration is greater than
the threshold set at the creation of the Pregel instance. At each iteration, the

https://rdfshape.weso.es/link/16903596470
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P27


Using Pregel to create Knowledge Graphs Subsets 5

vertices will send messages to their neighbors, provided the given direction, and
subsequently, they may receive messages sent from other nodes. Moving forward,
an aggregation function is applied, and the vertices are updated accordingly.
Finally, the iteration counter is incremented, and the next iteration starts.

Initial Messages

Send Messages

Aggregate Messages

Vertex Program

[if superstep ≤ max superstep] [else]

Fig. 1: Pregel model as implemented in pregel-rs

3 Subsetting approaches

3.1 Knowledge Graph subsets, a formal definition

Given the definition 1 of a Knowledge Graph, the formal definition of a Knowl-
edge Graph subset is seen in definition 3.

Definition 3 (RDF-based Knowledge Graph subset [3]). Given a Knowl-
edge Graph G = ⟨S,P,O, ρ⟩, a RDF sub-graph is defined as G′ = ⟨S ′,P ′,O′, ρ′⟩
such that: S ′ ⊆ S, P ′ ⊆ P, O′ ⊆ O and ρ′ ⊆ ρ.

Example 3 (Example of an RDF-based Knowledge Graph subset). Given the
RDF-based Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1, the subset of G′

that contains only the information about Alan Turing’s birthplace is defined as
follows:

I′ = { alanTuring, warringtonLodge, dateOfBirth, placeOfBirth }
B′ = { ∅ }
L′ = { 23 June 1912 }
ρ′ = { (alanTuring, dateOfBirth, 23 June 1912),

(alanTuring, placeOfBirth, warringtonLodge) }

https://github.com/weso/pregel-rs
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
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3.2 ShEx-based matching generated subsets

ShEx-based matching comprises using a ShEx schema S as input, including any
nodes whose neighborhood matches any of the shapes from S in the produced
subset [3]. This approach is used by the PSchema algorithm. Having the neigh-
borhood of a node s ∈ S defined as follows:

Definition 4 (Neighborhood of a node in a Knowledge graph). The
neighbors of an item s ∈ S in a RDF-based Knowledge graph G = ⟨S,P,O, ρ⟩
are defined as neighbors(s) = {(s, p, o) : ∃v ∈ S ∧ v = (s, p, o)}.

Example 4 (Neighborhood of Alan Turing (Q7251)). Given the RDF-based Knowl-
edge graph G = ⟨S,P,O, ρ⟩ from example 1, the neighborhood of Alan Turing
(Q7251) ∈ S is defined as follows:

neighbors(alanTuring) = { (alanTuring, instanceOf , Human),
(alanTuring, dateOfBirth, 23 June 1912),
(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, placeOfDeath, wilmslow),
(alanTuring, employer, GCHQ) }

Example 5 (Example of a ShEx-based matching subgraph). Given the RDF-based
Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1 and the ShEx schema S
defined in example 2, the ShEx-based matching subgraph of G from S is the
RDF-based Knowledge graph G′, which defined as follows:

I′ = { alanTuring, wilmslow, GCHQ, unitedKingdom, warringtonLodge,
dateOfBirth, placeOfBirth, employer, country }

B′ = { ∅ }
L′ = { 23 June 1912 }
ρ = { (alanTuring, dateOfBirth, 23 June 1912),

(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, employer, GCHQ),
(wilmslow, country, unitedKingdom)
(warringtonLodge, country, unitedKingdom) }

4 Pregel-based Schema validating algorithm

In this section, both the support data structure and the subsetting algorithm are
described, including the different steps followed in the Pregel implementation.

https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Q7251
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
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4.1 Shape Expression tree

The Shape Expression tree is a hierarchical data structure that represents Shape
Expressions in a tree format. Each node in the tree corresponds to a Shape
Expression, with the root node being the Shape Expression being validated.
Nodes can reference other Shape Expressions, which become its children in the
tree.

Definition 5 (Shape Expression tree). Given a Shape Expression S, the
Shape Expression tree T is defined as follows:

– If S is a terminal Shape; that is, it does not reference any other Shape, then
T is a leaf node.

– If S is a non-terminal Shape; that is, it references other Shapes, then T is
an internal node, and its children are the Shapes referenced by S. Which
will be the root nodes of their respective Shape Expression trees.

Example 6. Given the Shape Expression S defined in example 2, the Shape Ex-
pression tree T obtained from S was created using the RDFShape and is de-
picted in Figure 2. Person is the root node of T , a non-terminal Shape that
references Organization, Date, and Place. Thus, the children of the root are
the Shapes referenced by Person, which are the root nodes of their respective
Shape Expression trees. In the case of the first child, Organization is a terminal
Shape, and thus, it is a leaf node. The same applies to Date. However, Place
is a non-terminal Shape, and thus, it is an internal node. Its children are the
Shapes referenced by it. This representation is recursive, and thus, the Shapes

referenced by Place are the root nodes of their respective ShEx trees.

:Person

:Organization :Date :Place

:Country

:country

:birthPlace:birthDate:employer

Generated by rdfshape

Fig. 2: Example of a Shape Expression tree for the Person Shape Expression

The currently supported ShEx language does not support recursion; however,
it is planned to implement a solution based on the idea of unfolding the recursive
schema.

https://rdfshape.weso.es/link/16903596470
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4.2 Subsetting algorithm using Pregel and ShEx

PSchema is a Pregel-based algorithm that creates subsets of RDF-based Knowl-
edge Graphs using Shape Expressions. The algorithm’s core idea is to validate
the nodes of the Shape Expression tree T in a bottom-up manner, proceeding
from the leaves to the root. The validation is performed in a reverse level-order
traversal of the tree. The algorithm comprises two main phases: initialization and
validation. During the initialization phase, the initial messages are generated and
sent to the vertices, while also setting up the superstep counter and threshold.
This phase establishes the baseline for subsequent steps. In the validation phase,
referred to as the local computation, the Shapes of the tree T are validated. The
vertices are updated based on the messages they receive from their neighbors.
The aforementioned Pregel fork is publicly accessible on Github 1. For a formal
description of the procedure, refer to Algorithm 1.

Algorithm 1: The PSchema algorithm as implemented in Rust

Input parameters:
g : Graph[V, E ]
l : L

Output:
sub: Graph[V, E ]

maxIters = see Lemma 1
initialMsgs = None

return Pregel(g,maxIters,initialMsgs,sendMsg,aggMsgs,vProg)

def sendMsg(l : L, g : Graph[V, E ]) = msgs where foreach l ∈ L

msgs.insert





validate(l , g) if l = TripleConstraint see Algorithm 2

validate(l , g) if l = ShapeReference see Algorithm 3

validate(l , g) if l = ShapeAnd see Algorithm 4

validate(l , g) if l = ShapeOr see Algorithm 5

validate(l , g) if l = Cardinality see Algorithm 6

None otherwise


def aggMsgs(msgs: M) = msgs where

msgs.insert

({
msg if msg ̸= None

∅ otherwise

)
def vProg(l : L, g : Graph[V, E ], msgs: M) = labels.concatenate(msgs)

To continue, a formal description of the validating algorithms for each of the
currently implemented Shapes is provided. The input parameters are simplified.
In the actual implementation of the algorithm, it can access the whole Graph
and its state.

1 https://github.com/weso/pregel-rs

https://github.com/weso/pregel-rs
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Algorithm 2: Validate method for the TripleConstraint Shape

Input parameters:
l : L
( , p, o): (s ∈ S, p ∈ P, o ∈ O)

Output:
msg :M

match l .object
case Value(v)

if p == l .predicate ∧ o == v then
return l

case Any
if p == l .predicate then

return l

Algorithm 3: Validate method for the ShapeReference Shape

Input parameters:
l : L
( , p, o): (s ∈ S, p ∈ P, o ∈ O)

Output:
msg :M

if p == l .predicate ∧ o == l .reference.object then
return l

Algorithm 4: Validate method for the ShapeAnd Shape

Input parameters:
l : L
( , p, o): (s ∈ S, p ∈ P, o ∈ O)

Output:
msg :M

ans← true

forall l ∈ l .shapes do
ans← ans ∧ validate(l, g)

if ans then
return l
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Algorithm 5: Validate method for the ShapeOr Shape

Input parameters:
l : L
( , p, o): (s ∈ S, p ∈ P, o ∈ O)

Output:
msg :M

ans← false

forall l ∈ l .shapes do
ans← ans ∨ validate(l, g)

if ans then
return l

Algorithm 6: Validate method for the Cardinality Shape

Input parameters:
l : L
( , p, o): (s ∈ S, p ∈ P, o ∈ O)
prevMsg :M

Output:
msg :M

count← prevMsg.count()
match l .min

case Inclusive(min)
if count ≤ min then

min← true

case Exclusive(min)
if count < min then

min← true

match l .max
case Inclusive(max)

if count ≥ max then
max← true

case Exclusive(max)
if count > max then

max← true

if min ∧max then
return l
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Lemma 1 (Convergence of the PSchema algorithm). Given a Shape Expression
tree T and a Knowledge Graph G, let h denote the height of T ; then the PSchema
algorithm is going to converge in h supersteps. This is, the algorithm is going to
validate all the Shapes of T in h supersteps.

Example 7 (Example of the subset generated by the PSchema algorithm). Given
the RDF-based Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1 and the ShEx
schema S defined in example 2, the ShEx-based matching subgraph of G from S
is the RDF-based Knowledge graph G′ from example 5, which is represented in
Turtle syntax as follows, refer to RDFShape for more information:

1 PREFIX : <http://example.org/>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3

4 :alan :placeOfBirth :warrington ;

5 :dateOfBirth "1912-06-23"^^xsd:date ;

6 :employer :GCHQ .

7

8 :warrington :country :uk .

9

10 :wilmslow :country :uk .

4.3 Optimizations

Columnar storage [1] is a data warehousing technique used in databases
and data processing systems. Unlike traditional row-based storage, where data
is stored in rows, columnar storage organizes data in columns, grouping values
of the same attribute. The columnar storage format offers several advantages.
Firstly, it enables better data compression, as similar data types are stored to-
gether, reducing the storage footprint. This leads to faster data retrieval and
reduced I/O operations when querying specific columns. Columnar stores are
advantageous for analytical workloads that involve aggregations or filtering on
specific attributes, as it only needs to read the relevant columns. Moreover,
columnar storage enhances query performance by leveraging vectorized process-
ing. Modern CPUs can perform operations on entire sets of data (vectors) more
efficiently than on individual elements, further improving query speeds.

Caching Dictionary encoding [15] is a data compression technique where unique
values in a column are assigned numerical identifiers (dictionary indices) and
stored in a separate data structure. The actual data in the column is replaced
with these compact numerical representations. This technique significantly re-
duces the storage footprint, especially when columns contain repetitive or cate-
gorical data with limited distinct values, as predicates in real-life scenarios.

When combined, columnar storage and dictionary encoding offer several
caching benefits. The reduced data size allows more data to be cached within the

https://rdfshape.weso.es/link/16905837719
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same memory capacity, maximizing cache utilization. Additionally, the focused
access ensures that only the necessary data is retrieved, further enhancing cache
efficiency. In data processing scenarios with repeated patterns and aggregations,
caching with columnar storage and dictionary encoding can lead to performance
improvements. The cache can hold a large amount of relevant data, minimizing
the need for costly disk accesses and accelerating query response times, ulti-
mately resulting in a more efficient and responsive data processing system.

5 Experiments and results

Two different Knowledge Graphs are going to be used to test the algorithm,
namely, Uniprot2 and Wikidata. The former is a database that contains infor-
mation about proteins [2], while the latter is a general-purpose knowledge base
having a dump created the 21st August 2017. As the serialization format of
Uniprot is RDF/XML, the riot utility from Apache Jena is used to convert from
RDF/XML to N-Triples. Refer to the examples in the GitHub repository3.

As it is seen, the results obtained are similar regarding the size of the sub-
sets. That is, the optimizations have no impact on the validity of the tool;
this is, the subsets are correct for the Shape defined. For this, two Shapes
were created during the Japan BioHackathon 2023 [8], namely, protein and
subcellular location. When comparing the optimized version against its coun-
terpart, the time consumption is reduced by 38% and 35%; while the memory
consumption is decreased by 43% and 38%, respectively. Hence, the optimiza-
tions are effective both time and memory-wise. The next experiment will focus
on how the algorithm behaves when its parameters are modified.

Shape Expression Initial triples Resulting triples Time (s) Memory (GB)

protein 7,346,129 226,241 23.35 6.74

subcellular location 7,346,129 1,084,151 57.56 6.04

(a) Execution of the PSchema algorithm with no optimization enabled

Shape Expression Initial triples Resulting triples Time (s) Memory (GB)

protein 7,346,129 226,241 14.58 3.87

subcellular location 7,346,129 1,084,151 37.76 3.75

(b) Execution of the PSchema algorithm with all the optimizations enabled

Fig. 3: Time and memory consumption to create Uniprot’s subsets

In the second experiment, the number of Wikidata entities, the depth, and
the width of the ShEx tree were modified. The results are depicted in Figure 4.
It was observed that the execution time followed a linear trend in all scenarios.

2 https://ftp.uniprot.org/pub/databases/uniprot/current release/rdf/
3 https://github.com/angelip2303/pschema-rs/tree/main/examples/from uniprot

https://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf/
https://github.com/angelip2303/pschema-rs/tree/main/examples/from_uniprot
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This indicates that as the number of Wikidata entities increased, the execution
time increased at a consistent rate. Additionally, the depth and width of the
ShEx tree influenced the execution time similarly, displaying a linear correlation.
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Fig. 4: Time to create the subsets of Wikidata with pschema-rs

6 Related work

6.1 Knowledge Graph descriptions

Several Knowledge Graph descriptions have been proposed, with many intro-
duced in [3,5]. Among them, the most relevant ones for this paper are Property
graphs, RDF graphs, and Wikibase graphs.

Shape Expressions are used to create the subsets, which were first introduced
in 2014. While SHACL (Shapes Constraint Language) is the W3C recommenda-
tion4 since 2019, the Wikidata community has been using Shape Expressions [14]
in the entity schemas namespace. This preference stems from the fact that Shape
Expressions better adapt to describing data models compared to SHACL which
is more focused on constraint violations. A comparison between the two can be
found in the following book [9].

6.2 Knowledge Graph subsets

Although it is possible to create subsets of the RDF Knowledge Graph through
SPARQL construct queries, there are limitations to this approach. Notably, the
lack of support for recursion. While proposals to extend SPARQL with recursion
have been made [13], such extensions are not widely supported by existing pro-
cessors. In light of these limitations, a new method using Shape Expressions for
creating Knowledge Graph subsets is described in [3]. PSchema follows a similar
approach to that presented in [16]. However, SP-Tree uses SPARQL to query the
Knowledge Graph, while PSchema uses Shape Expressions and Rust. As such,

4 https://www.w3.org/TR/2017/REC-shacl-20170720/

https://www.w3.org/TR/2017/REC-shacl-20170720/
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the PSchema algorithm is more flexible than SP-Tree, and several optimizations
can be applied to it.

The creation of Knowledge graph subsets has gained attention, starting from
the 12th International SWAT4HCLS Conference5. It has since been selected as a
topic of interest in the Elixir Europe Biohackathon 20206 and the SWAT4HCLS
2021 Hackathon, which resulted in several publications collecting different ap-
proaches [7,6]. This paper is inspired on one of those approaches that was based
on Apache Spark but using a new implementation of the Pregel algotithm in
Rust.

7 Conclusions and future work

In this paper, a novel approach for creating subsets of RDF-based Knowledge
Graphs using Shape Expressions and the Pregel framework is presented. The
PSchema algorithm is described, including the different steps followed in the
Pregel implementation. Moreover, the support data structure and the optimiza-
tions applied are also described. Two Shapes were created during the Japan
BioHackathon 2023 [8] for testing the tool and its validity regarding the op-
timizations applied. The subsets resulting subsets have the same size in both
scenarios. When comparing the optimized version against its counterpart, the
time consumption is reduced by 38% and 35%; while the memory consumption is
decreased by 43% and 38%, respectively. Hence, the optimizations are effective.
The next experiment focused on how the algorithm behaves when its parameters
are modified. It was observed that the execution time followed a linear trend in
all cases.

In the future, PSchema could be extended to support more complex ShEx
features like recursive Shapes, and an early-prune strategy to reduce the cost
of the local computation. The algorithm should receive the ShEx schema as an
input, rather than programmatically creating descired Shape instance. It is also
planned to give support for WShEx [4], a ShEx-inspired language for describing
Wikidata entities, where qualifiers about statements and references can be used
for validating purposes. This would allow the algorithm to be used in a wider
range of scenarios.

To conclude, PSchema, being a Pregel-based Knowledge Graph validating
algorithm, allows the processing of large-scale Knowledge Graphs. This is espe-
cially relevant in the Bioinformatics, where the integration of data from multiple
sources is needed. What’s more, inference algorithms can be applied to the sub-
sets generated, which is not possible in larger Graphs due to their sizes.

5 https://www.wikidata.org/wiki/Wikidata:WikiProject Schemas/Subsetting
6 https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/
projects/35

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
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