
Knowledge-Based Systems 238 (2022) 107975

D

e
K
p
u
p
i
T
W
S

a
t
t
t
m
n
e
t
S
A
c
t

S

l

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Automatic extraction of shapes using sheXer
Daniel Fernandez-Álvarez ∗, Jose Emilio Labra-Gayo, Daniel Gayo-Avello
epartment of Computer Science, University of Oviedo, Oviedo, Spain

a r t i c l e i n f o

Article history:
Received 19 May 2021
Received in revised form 18 October 2021
Accepted 13 December 2021
Available online 17 December 2021

Keywords:
Knowledge Graph
RDF
ShEx
SHACL
Automatic extraction

a b s t r a c t

There is an increasing number of projects based on Knowledge Graphs and SPARQL endpoints. These
SPARQL endpoints are later queried by final users or used to feed many different kinds of applications.
Shape languages, such as ShEx and SHACL, have emerged to guide the evolution of these graphs and
to validate their expected topology. However, authoring shapes for an existing knowledge graph is a
time-consuming task. The task gets more challenging when dealing with sources, possibly maintained
by heterogeneous agents. In this paper, we present sheXer, a system that extracts shapes by mining
the graph structure. We offer sheXer as a free Python library capable of producing both ShEx and
SHACL content. Compared to other automatic shape extractors, sheXer includes some novel features
such as shape inter-linkage and computation of big real-world datasets. We analyze the features and
limitations w.r.t. performance with different experiments using the English chapter of DBpedia.

© 2021 Elsevier B.V. All rights reserved.
r

1. Introduction

The interest in Knowledge Graphs (KGs) is rapidly growing,
specially in the last decade. Insightful examples of big and open
Gs are DBpedia [1], Wikidata [2], or YAGO [3]. These projects are
ublished online and allow individuals and companies to make
se of their content. Also, many big companies use their own
rivate or semi-private KGs for a wide variety of purposes, includ-
ng Google, Amazon, Facebook, and Microsoft, among others [4].
he most common way to build and expose those KGs is using
3C standards such as Resource Description Language (RDF) and

PARQL.
In such a context, mechanisms to validate the structure or

ssist the maintenance of KGs are needed. Ontologies can be used
o define restrictions w.r.t. property and class usage. However,
hose restrictions defined by ontologies are frequently not enough
o model every schema feature in a given KG. For example, a KG
ay need to combine different ontologies using some restrictions
ot defined in the actual ontologies. It may also need to define
xtra restrictions over a specific ontology element. To overcome
his, shape languages such as ShEx (Shape Expressions) [5] and
HACL (Shapes Constraint Language) [6] have been proposed.
lthough these two languages are not fully equivalent [7], both
an provide mechanisms to validate and document the expected
opology of a KG.

Shape languages are structured around the concept of shape.
hapes describe how the different types of nodes within a KG are

∗ Corresponding author.
E-mail addresses: fernandezalvdaniel@uniovi.es (D. Fernandez-Álvarez),

abra@uniovi.es (J.E. Labra-Gayo), dani@uniovi.es (D. Gayo-Avello).
 u

ttps://doi.org/10.1016/j.knosys.2021.107975
950-7051/© 2021 Elsevier B.V. All rights reserved.
supposed to be connected with other nodes. In Fig. 1, we show a
toy example of a shape describing the expected topology of a User
node in SHACL (A) and ShEx (B).1 A node conforming with the
shape :User should have exactly a schema:name2 of xsd:string type
and, optionally, it can have a birth:date of xsd:date type. The shape
:User can be used to validate whether the nodes that represent
users conform with their expected topology in the context of a
given KG.

Usually, the shapes are handcrafted by domain experts. Those
shapes can guide content modifications or be used to check the
KG’s correctness with automatic validators [8]. However, produc-
ing and maintaining shapes is time-consuming. The task becomes
more challenging when dealing with big and heterogeneous KGs,
possibly with evolving schemata, and maintained by different
agents.

Automatic shape extractors were proposed to overcome this
issue. Automatic extractors can produce shapes by mining KGs
or exploring the ontologies used in those KGs, requiring few
or no human intervention. As this is a relatively new problem,
few automatic extractors have been proposed. Many of them are
prototypes that are not accurate enough yet, or have scalability
issues to deal with big datasets. In many cases, this prevents both
users and data-maintainers from using automatic extractors.

In this paper, we present sheXer, an automatic shape extractor
based on graph mining. sheXer can produce ShEx and SHACL
content, and it allows to tune the extraction process with multiple

1 You can view and modify this example in the following link: http://
dfshape.weso.es/link/16182267731 Accessed in 2021/10/15.
2 All the prefixes used in this paper are commonly used and can be solved
sing the on-line tool http://prefix.cc/.

https://doi.org/10.1016/j.knosys.2021.107975
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107975&domain=pdf
mailto:fernandezalvdaniel@uniovi.es
mailto:labra@uniovi.es
mailto:dani@uniovi.es
http://rdfshape.weso.es/link/16182267731
http://rdfshape.weso.es/link/16182267731
http://prefix.cc/
https://doi.org/10.1016/j.knosys.2021.107975

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

c
i
p
T
1
t
h
s

A
t
o
a
p
a
c

t
o
r
p
e

2

t
p
u
i

l
2

l
W

h

Fig. 1. Example of :User shape. (A) SHACL (turtle syntax). (B) ShEx (ShExC syntax).
s
d

2

s
u
f
I
i
p
p

i
t
p
c
l
c

2

m
s
o

s
S
s
f

l
m

onfiguration parameters. sheXer was suggested as a theoretical
dea [9] and proposed as a demo [10]. Nowadays, we offer a
ublic Python library with a mature implementation of sheXer.3
his library has already been used in several scientific works [11,
2]. Also, sheXer is integrated with external tools relevant to
he Linked Data community, such as WikidataIntegrator.4 sheXer
as some unique features compared to other existing automatic
hape extractors, including:

• It performs shape inter-linkage, i.e., it can produce con-
straints that refer to other shape labels. Most of the alter-
natives use less specific macros instead, such as IRI.5
• It uses an iterative approach that allows for computing big

datasets. There is not a strict relation between the size of
the computed KG and the memory consumption. There is
no need to keep in memory the whole graph at any point in
the process.
• It assigns a trustworthiness score to each one of the inferred

constraints. Although this feature is partially shared with
Shape Designer [13], sheXer uses this score to sort, fil-
ter, or merge some constraints while performing the shape
extraction.

In this paper, we formalize sheXer’s algorithm and workflow.
lso, we perform several experiments to analyze the execution
ime and memory consumption of our proposal. To the best of
ur knowledge, the only other automatic shape extractor with
published performance study is SHACLearner [14]. Its authors
erform experiments against the English chapter of DBpedia,
nd they provide details about execution time, but not memory
onsumption.
In Section 2, we offer an overview of our approach, its archi-

ecture, and its algorithms. In Section 3, we detail the conditions
f our experiments and then present and discuss the obtained
esults. In Section 4, we describe other existing proposals to
erform automatic shape extraction. Finally, in Section 5, we
numerate the conclusions and future lines of our work.

. System description

sheXer has a modularized architecture that allows it to adapt
o many different scenarios. Each module expects an input and
roduces an output. This output may be presented to the final
ser or consumed by some other module. sheXer’s architecture
s shown in Fig. 2. Its work-flow consist of the following steps:

3 The source code, installing instructions and documentation is pub-
icly available: https://github.com/DaniFdezAlvarez/shexer/tree/1.3.0 Accessed in
021/10/15.
4 WikidataIntegrator is a well-known tool in Wikidata community. It al-

ows to interact with the KG using Python bots https://github.com/SuLab/
ikidataIntegrator Accessed in 2021/10/15.
5 In ShEx, the macro IRI stands for any node which is an IRI. In SHACL, sh:IRI
as an equivalent meaning.
 2

2

• The user chooses an input. This includes target RDF source,
target shapes to extract, and possibly some configuration
parameters.
• The Instance Tracker determines which nodes of the target

source will be used to extract which shapes. It consumes
relevant triples from the Graph Iterator.
• The Feature Tracker within the Shape extractor generates a

set of candidate constraints associated with each shape. It
uses the information produced by the Instance Tracker and
consumes the graph’s content using the Graph Iterator.
• The Shape Adapter filters, adapts, merges, and sorts candi-

date constraints according to the configuration settings, so
a final set of constraints is produced.
• The Shape Serializer turns the in-memory shapes produced

by the Shape Adapter into the content chosen by the user.

The current implementation of sheXer includes several ver-
ions of most of the modules. In the following sections, we will
etail the structure and mission of each module.

.1. Graph iterator

There are two phases of the workflow in which the target RDF
ource needs to be parsed: (1) determining which nodes will be
sed to build which shapes, and (2) building the abstract profile
or each shape. The target RDF content is served by the Graph
terator (GI) to perform those actions. Regardless of the type of
nput, the mission of the GI is to retrieve relevant triples for the
rocess in an iterative way. Whenever it is possible, the GI avoids
lacing in memory the entire target content at a time.
The internal details of this software piece may change accord-

ng to the kind of input. For example, an RDF input based on local
ext files can be trivially served by reading small file chunks and
rocessing triple by triple. The input could be instead part of the
ontent exposed in some remote SPARQL endpoint. The sheXer
ibrary includes GI implementations to deal with several input
ases, including the ones already mentioned.

.2. Instance tracker

The mission of the Instance Tracker (IT) consists of deter-
ining which nodes (aka instances) will be used to build which
hapes. The nature of this process can vary depending on the type
f input and the target shapes and instances.
For example, when sheXer receives a shape map6 to link a

hape with some instances, it could be necessary to execute a
PARQL query to find those shapes. When the target shapes are
pecified using a list of target classes, the process consists of
inding the instances of those classes. sheXer also lets the user to

6 sheXer supports shape maps, which are the standard ShEx mechanism to
ink nodes with the shape that they should conform with. The syntax of shape
aps is specified in the following link: http://shex.io/shape-map/ Accessed in
021/10/15.

https://github.com/DaniFdezAlvarez/shexer/tree/1.3.0
https://github.com/SuLab/WikidataIntegrator
https://github.com/SuLab/WikidataIntegrator
http://shex.io/shape-map/

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

g
c
r
K

t

2

e
s
s
f
a
a
h
w
b
t
c

Fig. 2. sheXer base architecture.
Fig. 3. Example of constraints that could get positive votes from a certain triple.
p

t
F

enerate a shape for every class in the target graph. Our proposal
an combine some of those strategies too. For example, one can
equest shapes via shape maps and for every class in the target
G at a time.
The IT outputs a dictionary that links instances (keys) with

heir list of target shapes (values).

.3. Feature tracker

The Feature Tracker (FT) finds a candidate set of features for
ach target shape using a voting system. The FT receives the in-
tance dictionary produced by the IT. Then, it processes the triples
ent by the GI. The triples are used to generate positive votes
or some constraints. sheXer decorates the instance dictionary to
nnotate the number of times that a combination of predicate
nd object type is found for each instance. These constraints can
ave different specificity w.r.t. predicate and object. In Fig. 3,7
e show an example of several candidate constraints supported
y the triple te =(:John :age ‘‘32’’^^xsd:string). sheXer limits
he positive votes generated to some representative object and
ardinality combinations using the following criteria:

• Exact cardinality, i.e., exact number of triples where this
combination of property and object type occurs in the
dataset for a given subject.

7 The constraints shown in this Figure are written for shapes in ShExC.
 c

3

• The range {1, unbounded}, represented by the positive clo-
sure ‘+’.

sheXer can produce shapes whose range includes 0 occur-
rences of a given constraint. However, they are generated in
the Shape Adapter module. Regarding the object’s specificity, the
following constraints get positive votes:

• When the object is a literal: the exact type of the literal, the
macro LITERAL (any literal), and the macro ‘.’ (any element).
• When the object is a URI: the macro URI (any URI) and the

macro ‘.’. In case the URI is linked with a shape s′, also the
label of s′.
• When the object is a blank node: the macro BNODE (any

blank node) and the macro ‘.’.

The maximum number of votes that a constraint of a shape s
can obtain is the number of instances used to extract s. Once all
nodes have been explored, each constraint cs is associated with
a trustworthiness score θcs =

ncs
ns

, where ncs is the number of
ositive votes to cs and ns is the number of instances of s.
The user can specify a minimum θU ∈ [0, 1], and the FT uses

his value to discard any constraint c such as θcs < θU . When the
T finishes, every shape s is associated with a candidate set of
onstraints which is at least supported by n · θ of its instances.
s U

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

F
t
u
c

1
1
1
1
1
1

1
1

1

i
p

(
x
θ
H
i

o
p
m

2

s
a
n
(
i
s

o

2

s

t

w

2.4. Shape adapter

The Shape Adapter (SA) analyzes the shapes outputted by the
T to filter, modify, and merge, some constraints. Finally, it sorts
hem. For such a task, the SA uses Algorithm 1. To properly
nderstand the algorithm, several symbol conventions must be
larified:

Algorithm 1 Shape Adapter: filtering stage pseudo-code

Input: S = target shapes
1: for each {s | s ∈ S} do

▷ Stage 1:
2: C ′s ← ∅
3: U ← fU (Cs)
4: for each {TU | TU ∈ U} do
5: αU ← fdU (TU)
6: IαU ← ∅

7: for each {c | c ∈ TU ∧ c ̸= αU } do
8: Iαu ← Iαu ∪ f#(c)
9: C ′s ← C ′s ∪ {αU }

▷ Stage 2:
0: C ′′s ← ∅
1: V ← fV (C ′s)
2: for each {TV | TV ∈ V } do
3: αV ← fdV (TV)
4: if ∄IαV then
5: IαV ← ∅

6: for each {c | c ∈ TV ∧ c ̸= αV } do
7: Iαv ← Iαv ∪ f#(c)

18: C ′′s ← C ′′s ∪ {αV }

▷ Stage 3:
9: Cs ← C ′′s

• Every function or macro used to encapsulate any behavior
is denoted as fa(x), where a is an identifier.
• S is the set containing all the target shapes.
• We denote the constraints associated to a shape s with Cs.
• fU (X) receives a set of constraints X and returns a collection

of sets U . Each TU ∈ U is a group of constraints that have the
same property and type of object, but different cardinality.
• fdU (X) receives a set of constraints X which are expected to

have the same property and type of object, and it returns
the dominant constraint αU of the set. αU is the constraint
with the highest trustworthiness. In case of tie, the αU is the
one with the most restrictive cardinality.8
• The constraints can have some text comments associated.

We denote the comments associated to a constraint c as Ic .
• f#(x) receives a constraint x and returns a textual comment

with some relevant information of x, such as θxs , cardinality
and type of object.
• fV (X) receives a set of constraints X and returns a collections

of sets V . Each set in V contain constraints that have the
same property but different type of object.
• fdV (X) receives a set of constraints X and returns a dominant

constraint αV . A constraint c ∈ X is found the dominant
constraint αV of X when two conditions are met. First, for
any ci ∈ X : θci < θc , the object type of c subsumes the
object type of ci. Second, there cannot be any ci ∈ X :
θci > θc such that the object type of ci subsumes the type

8 The criteria to choose dominant constraints can be configured by the user
n different ways. For example, more general cardinalities could be chosen as
referment. See sheXer’s documentation for further details.
 k

4

of c. Informally, this means that the type object of c is as
specific as possible and, at a time, c is supported by as much
instances as possible.9

Algorithm 1 can be separated in different stages to be easily
understood. In stage 1 (lines 2 to 9), the original set of constraints
Cs of s is transformed into a new set C ′s , such that every c ∈ C ′s
has a unique combination of property and object type in C ′s . If
Cs already meets this condition, then Cs = C ′s . The constraints
of Cs not included in C ′s are not completely discarded. They are
transformed into textual comments that can appear next to their
dominant constraint in the final results.

For example, picture a group of constraints composed by c1 =
foaf:name xsd:string +), with θc1 = 1, and c2 = (foaf:name
sd:string {1}), with θc2 = 0.9. This group is related to a shape s.
c1 > θc2 , so c1 is picked as the dominant constraint of the group.
owever, the user may find relevant also that 90% of the target
nstances associated to s has exactly one foaf:name. sheXer uses
in-line textual comments to provide some information related to
c2.

In stage 2 (lines 10 to 18), constraints with the same property
are transformed into a single dominant constraint. Note that the
set of constraints transformed in Stage 2 is C ′s (see line 11), so
every constraint has already a unique combination of property
and object type. The constraints in C ′s may already have some
comments associated that should be considered when adding a
new comment in this stage.

Finally, in stage 3 (line 19), C ′′s becomes the set of constraints
f s. At this point, every constraint associated to s has a unique
roperty in s, and can have extra information in textual com-
ents.

.4.1. Extending cardinalities
The constraints found in Algorithm 1 may not be final. The SA

till performs an iteration that could modify their cardinality. As
lready stated, the FT outputs constrains whose cardinality does
ot include the possibility of zero occurrences, such as optional
?) or none-to-many (*). This can lead to situations where an
nstance i used to build a shape s does not conform with s. Let us
uppose that sheXer is configured to extract shapes with θU = 0.8,
and a shape s is obtained. s includes a constraint c = (foaf:name
xsd:string +) with θc = 0.9. c has been included in s because
θc > θU , but θc = 0.9 means that 10% of the instances does not
support c , ergo they do not conform with s.

sheXer includes a configuration option that allows modifying
conflictive cardinalities, so every instance conforms with its re-
lated shapes. When this option is active, the cardinality of every
constraint c whose θc < 1 is modified to include a range with
zero occurrences. Constraints with cardinality + are changed to *.
Cardinalities of {1} are changed to ?. In general, every cardinality
is modified to include the zero case without losing precision w.r.t.
its maximum cardinality.

The original cardinality and its θs are associated with the
constraint as a textual comment. With this, the results include
the proportion of instances that conform with the constraint
excluding the zero-case. When the zero-case is included, the θc
f any constraint c raises to 1.

.4.2. Sorting triple constraints
The shapes extracted can include a large number of con-

traints, and the user may not want to read or consider them all.
The SA sorts a shape’s constraints in decreasing order w.r.t.

heir θc . With this, the most reliable constraints are shown first.
Constraints including the zero-case are sorted using the θcs com-
puted before the zero-case was included.

9 This dominance criteria can be configured as well. For example, constraints
ith oneOf operators could be generated, Also, some tolerance thresholds to
eep precise constraints that do not cover all the cases can be defined.

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

t
d
t
p
o
a

S
u

2

c
b
r
a
i
p
c
c
w
e

t
t
p
i
b
b
e
t
t

O

H
t
g
m
t

3

a
i
p
m
a

p
a
f

w
b
i

k

c
l

r
s
n
s
p
b

3

D
s
a
c
t
r
i

t
o
g
b
e
u
T
m
r
p
T
t
t

2.5. Shape serializer

The Shape Serializer (SS) transforms the in-memory informa-
ion into an actual output for the user. The complexity of this task
epends on the divergence between the target output format and
he conceptual information outputted by the SE. Our current im-
lementation of sheXer includes two different implementations
f the SS: One for the generation of ShEx (in ShExC format) and
nother one for the generation of SHACL (in turtle format).
Both implementations of the SS are trivial. Even if ShEx and

HACL are not fully compatible [7], the subset of shape features
sed by sheXer can be represented in both languages.

.6. Computational complexity analysis

The computational complexity of sheXer is the sum of the
omplexities of its modules, which are executed sequentially. The
ase complexity of the SA and SS modules is O(c2/s) and O(c)
espectively, where c is the total number of constraints extracted
nd is s the number of target shapes. The SA’s O(c2/s) complexity
s an approximation supposing a balanced number of constraints
er shape and it comes from algorithm 1. Each constraint is
ompared with the rest of its shape’s constraints, so unbalanced
onstraints distributions could lead to higher complexities. The
orst case, where a single shape has all the constraints, will be
xecuted in O(c2). The rest of the SA’s stages are executed in O(c).
The complexity of the IT and the FT modules is tightly linked

o the nature of the input. For example, the IT can be executed
rivially in O(1) when the instance-shape relation is provided as
art of the input. However, if there is a need of parsing a local file,
t can take O(t), being t the number of triples. The complexity can
e higher if a SPARQL endpoint is involved in the process. The FT
ehaves similarly, as both the IT and the FT depend on the GI’s ex-
cution. In the following section, we perform several experiments
o extract shapes from local RDF files. Under these conditions,
hese two modules have the following base complexity:

• IT: O(tc), where tc is th number of instance-class triples.
• FT O(t + ti), where t is the number of triples and ti is the

number of triples whose subject is a relevant instance.

With this, sheXer would be executed in O(tc) + O(t + ti) +
(c2/s) + O(c) = O(t + tc + ti + c2/s). Note that t ≥ tc and

t ≥ ti. Note also that the only non-linear complexity is O(c2/s).
owever, when computing big datasets where ti ≫ c , this part of
he algorithm is not the most expensive. Many instances usually
enerate a relatively low number of constraints. Then, it takes
ore time to generate constraints from those instances in O(ti)

han to process later those few constraints in O(c2/s).

. Experiments

Shape languages are relatively new, and so is the problem of
utomatic shape extraction. To the best of our knowledge, there
s not yet a published benchmark to compare the correctness nor
erformance of existing approaches. The experiments of auto-
atic extractors already published range from pure qualitative
nalysis to performance or scalability analyses.
In this paper, we have designed experiments to check the

erformance of sheXer in two dimensions: memory consumption
nd execution time. We have executed sheXer to extract shapes
rom three well-known LD data sources: Wikidata,10 YAGO,11 and

10 Only triples using Wikidata direct properties in the namespace http://
ww.wikidata.org/prop/direct/ where used to extract shapes. The source can
e downloaded at https://archive.org/details/wikidata-json-20150518 Accessed
n 2021/10/15.
11 We computed YAGO3, which can be downloaded at https://yago-
nowledge.org/downloads/yago-3 Accessed in 2021/10/15.
5

Fig. 4. Performance of sheXer with different amounts of instances used.

DBpedia.12 Details about these computations can be found in Ta-
ble 1. In our experiments, we always use local RDF parsers of local
files. Alternative ways of input, such as querying an endpoint,
would depend on the endpoint’s performance and availability.
This could introduce factors that may not be related to sheXer’s
actual performance in the experiments.

We run our tests in a virtual machine with the following
specifications: Debian 8 Jessie OS, Intel Xeon E5502 processor
1.87 GHz, 32 GB RAM, HDD disk with a read speed of 145 MB/s
measured with the hdparm13 command. We set an arbitrarily low
threshold θU = 0.01 to discard noisy marginal features for every
omputation. θU = 0.01 discards constraints that comply with
ess than 1% of the total instances considered.

As one can see, the time and memory consumption to get a
esult are different for each source. These numbers are related to
ome input features, such as dataset size, number of triples, and
umber of target shapes. In the following subsections, we propose
cenarios with different inputs to analyze the impact of several
arameters on our proposal’s performance. All these scenarios are
ased on the DBpedia case.

.1. Limiting the number of instances used

As shown in Table 1, the number of instantiation triples in
Bpedia is higher than 6.6 million. We repeated the process of
hape extraction limiting the number of instantiation triples to
certain number. We started in 1M triples and repeated the

omputation with an arbitrary increment of 1M instances each
ime until every instance of every target class is used. The results
egarding execution time and memory consumption are shown
n Fig. 4.

As one can see, the number of instances has a linear rela-
ion with execution time and memory consumption. The impact
n memory consumption is caused by the instance dictionary
enerated by the IT and the FT. The more instances, the bigger
ecomes this dictionary and its associated memory usage. The
ffect on execution time is lower than the impact on memory
sage because sheXer is parsing the whole content in every case.
his parsing process sets a minimum execution time, which is
ore significant in environments where the I/O disk speed is

elatively low. Each triple is evaluated as relevant or not for the
rocess, and the relevant triples trigger extra calculations in the
F and SA modules. The more instances are considered, the more
riples become relevant. This causes the linear relation between
he number of instances and execution time.

12 We used a subgraph containing mapping-based literals and objects, as well
as class-instance relations. This collection can be downloaded at https://databus.
dbpedia.org/danifdezalvarez/collections/latest_mapping_shexer_test Accessed in
2021/10/15.
13 https://linux.die.net/man/8/hdparm Accessed in 2021/10/15.

http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/direct/
https://archive.org/details/wikidata-json-20150518
https://yago-knowledge.org/downloads/yago-3
https://yago-knowledge.org/downloads/yago-3
https://databus.dbpedia.org/danifdezalvarez/collections/latest_mapping_shexer_test
https://databus.dbpedia.org/danifdezalvarez/collections/latest_mapping_shexer_test
https://linux.die.net/man/8/hdparm

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

3

o
e
o
o
k
m
p

t
u
c
p
i
b
o
t
n
w
p
N
o

d
r
c
o
f
t

s
i
a
5
i
e

Table 1
Basic information about the YAGO, Wikidata and DBpedia computations.
Dataset Target shapes Dataset

size (GB)
No of
triples
(millions)

No of
instances
(millions)

Memory
usage
(GB)

Execution
time (h)

Wikidata dump
2015-05-18

1000 (top 1000 classes
with more instances)

42.0 991.6 M 13.0 M 25.2 38.3

YAGO3 1000 (top 1000 classes
with more instances)

10.3 138.3 M 5.3 M 12.6 17.2

English chapter
of Dbepedia

422 (every class in the
DBpedia Ontology with
instances)

6.0 44.0 M 6.6 M 16.1 4.1
Fig. 5. sheXer’s with different number of target shapes.

.2. Limiting the number of target shapes

As stated in Section 2.6, sheXer’s complexity depends, among
ther parameters, on the number of constraints produced. How-
ver, the number of constraints cannot be known a priori. In
pposition, in case there is a balanced distribution of the number
f constraints per shape, the number of shapes, which can be
nown a priori, can be used to estimate execution times and
emory usage. In this subsection, we study the impact on the
erformance of the number of target shapes.
In our experiment, we start with just 20 target shapes and

hen perform arbitrary increases of 20 shapes for each iteration
ntil every class with at least one instance is used. As already
hecked, the number of instances has a crucial impact on the
erformance. Then, the more instances a class has, the greater
s its impact. To avoid erratic numbers due to classes with an un-
alanced number of instances, we used an arbitrarily low number
f instances to be considered (as most) per each class. We picked
his limit so 90% (380 out of 422) of the classes has at least this
umber of instances. In our dataset, dbo:Chancellor ranks 380th
.r.t. to number of instances, with a total of 57. Then, the limit
icked was 57 instances. The results obtained are shown in Fig. 5.
ote that the memory scale in the y-axis is different from the rest
f the figures. It ranges from 0 to 200 MB instead of 0 to 16 GB.
As one can see, using a relatively low number of instances

rastically decreases memory usage. However, there is a linear
elationship between the number of shapes used and memory
onsumption. This relation is explained by two factors: on the
ne hand, the FT generates an abstract profile in main memory
or each shape. On the other hand, each shape causes a growth in
he instance dictionary proportional to its number of instances.

There is also a linear relation with execution time, with a
imilar tendency to the one observed in Fig. 4. However, there
s a notable difference in execution time between Figs. 5 and 4
t the maximum values of the x-axis, explained by the limit of
7 instances per class used in Fig. 5. The difference of 1.39 h
s the time used to compute the instances discarded in Fig. 5’s

xperiment.

6

Fig. 6. Performance of sheXer with different dataset sizes.

3.3. Limit the amount of triples

In this subsection, we study the performance effect of the
number of triples processed. Since the impact of the number of
instances has already been studied, in this experiment, we keep
the same number of instantiation triples across all iterations.
Every instance is used in every case. We do change the number of
entity-to-entity and entity-to-literal triples. Our DBpedia dataset
contains 37.328M of these two kinds of triples.

We performed iterations starting at the arbitrary amount of
5M triples (without counting the instantiation triples). Then, we
made an arbitrary increment of 5M triples for each iteration
until reaching the total 37.328M triples. The number of triples
of each kind added at each iteration is proportional to the total
number of triples available. In the first iteration, we used 2.698M
object triples and 2.302M literal triples, which make together 5M
elements. We add the very same number of triples of each type
at each iteration. The results are shown in Fig. 6.

As one can see, memory usage stays stable and independent of
the number of triples used. There is not a determinant linear rela-
tion between memory usage and triples which are not expressing
a class-instance relationship.

However, there is a linear relation with execution time caused
by the different number of triples relevant for the process in each
iteration. Those triples are potentially spread across the whole
dataset. Then, the bigger is the slice of the dataset used, the higher
are the chances to find this kind of triples.

3.4. Convergence w.r.t. number of instances used

As already shown, sheXer’s performance scales linearly w.r.t.
some features of the input dataset. Too ambitious goals can lead
to high rates of memory usage or execution time.

Execution times can be tackled by producing a parallel im-
plementation of sheXer. MapReduce [15] could be used for such
a goal. Every module described in Section 2 processes an input

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975
Fig. 7. Shape convergence using different amounts of instances per shape.

composed of independent elements, which can be computed in
parallel to produce later merged results.

The structure with more impact on memory usage is the
instance dictionary generated by the IT. The instance dictionary is
a key element to produce shape inter-linkage in reasonable exe-
cution time, as the operation to check the class of a given instance
is frequent, and it allows to perform it in O(1) complexity. It is
also used to produce precise cardinalities.

To cope with this limitation, we explore whether using a
relatively low number of instances per shape can be enough to
extract accurate shapes. We have extracted shapes for every DB-
pedia class in different iterations, using an increasing maximum
number of instances per shape at each iteration. We start using
two random instances per class. Then, we perform successive
iterations doubling the maximum number of instances. In Fig. 7,
we show the changes detected between consecutive iterations.
Note that the scale of the x-axis is logarithmic. At the end of each
iteration, we check two factors:

1. The number of total changes w.r.t. the previous iteration.
We count as a change in a shape one of the following
events:

• Gaining a triple constraint.
• Losing a triple constraint.
• Having a modification in any element of a triple con-

straint.

2. The number of shapes changed w.r.t. the previous iteration.
We consider that a shape has changed when there is at
least one change among its triple constraints.

The numbers shown in the y-axis are relative. For shapes,
we show the proportion of elements that changed w.r.t. the
total number of shapes, which is 422 in every case. For triple
constraints, we show the proportion of changes detected w.r.t.
to the total number of triple constraints.

As one can see, with very few exceptions, every iteration
causes fewer changes than its previous iterations. With a high
enough instance limit, the shapes tend to converge. With 8192
instances, just 1,5% of the constraints are changed. These changes
affect 11% of the shapes. For any other iteration with a higher
instance limit, the proportion of shapes getting any change is
always lower than 10% and affects 1% or less of the constraints.

The ratios of shape and constraint changes detected for every
iteration are also available in Table 2, as well as some other
information related to the shapes’ evolution. Let C be the set of all
7

target shapes to extract. An increment of x units in the instance
limit for a given iteration would introduce |C | · x new instances
on the computations just in case every c ∈ C has at least x
instances still not considered. Since this is not always the case, the
actual number of new instances introduced in the experiments in
successive iterations is shown in the sixth column of Table 2.

The number of new instances for each iteration allows us to
calculate what we called Shape-Instance Performance (SIP) and
Constraint-Instance Performance (CIP). SIP is shown in the sev-
enth column of Table 2, and it is defined as the relation between
the number of instances used and the number of shapes changed.
SIP can also be interpreted as the number of instances required to
cause a single shape change. As one can see, the more instances
are processed, the smaller is the effect of a single instance over
the results, and the SIP grows rapidly with each iteration. For
example, at the already mentioned limit of 8192 instances per
shape, 9267 new instances are worth a single shape change.

CIP is shown in the eighth column of Table 2 and it is defined
as the relation between the number of instances used and the
number of constraints changed. As one can see, the CIP is slightly
better than SIP for almost every iteration. However, both numbers
tend to stay in the same magnitude order.

Table 2 and Fig. 7 indicate that a representative sample of
instances can be enough to extract highly accurate shapes. Using
8192 as instance limit, the total instances computed are close to
1.3M. As shown in Fig. 4, this leads to a memory usage close to
3.2 GB, which is five times smaller than the 16 GB needed to
compute the dataset using every available instance.

4. Related work

Several approaches to automatically extract shapes have been
proposed. The closest work to sheXer is Shape Designer [13].
Shape Designer consists of a tool to perform automatic extraction
of shapes with KG mining. Both sheXer and Shape Designer
support ShEx and SHACL, and both keep an internal score of how
trustworthy a given constraint can be w.r.t. how frequently is it
supported by the nodes used to extract it. However, there are
fundamental differences between these two approaches. Shape
Designer is integrated with a graphic tool and aims to produce
shapes that are not intended to be definitive. The tool extracts
candidate shapes that the user can customize later. In opposition,
sheXer aims to produce shapes as accurately as possible and does
not necessarily include human intervention in its workflow. Also,
sheXer and Shape Designer offer different approaches to solve
constraints including IRIs. Shape Designer uses either the macro
IRI or value sets that can restrict the possible IRIs to a string
pattern. sheXer can produce actual shape inter-linkage, i.d., triple
constraints whose object is another shape label.

The system proposed in [16] uses a machine learning ap-
proach to generate SHACL shapes associated with classes. The au-
thors choose combinations of class-property and associate them
to two types of constraints: cardinality and range. Cardinal-
ity refers to the minimum and maximum occurrences. Range
refers to the type of object, which is one of sh:IRI, sh:BlankNode,
sh:BlankNodeOrIRI, sh:Literal, or specific literal types. Both types
of constraints have a finite set of possible final values, so the
approach is formulated in terms of a classification problem.
Once all pairs have been associated with their constraints, the
constraints of a given class c are all merged to produce a SHACL
shape associated to c.

The approach presented in [17] transforms abstract seman-
tic profiles generated by ABSTAT [18] into SHACL shapes. This
proposal does not perform shape inter-linkage, but it includes
constraints with inverse paths, i.e., it can describe the topology
of a node when it is used as the object in a triple. The system

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

s
t
p
a
e
a
e

f
o
a
c
t

I
a
w
b
d

R
g
t
R
i
c

f
e
w
p
c
T
d
r

A

Table 2
Shape convergence with different instance limits per class.
Instance limit per
class in previous
iteration

Instance limit per
class in current
iteration

Total
constraints

Ratio of shapes
that changed

Ratio of
constraints that
changed

Actual number
of new
instances used

Shape-Instance
Performance
(SIP)

Constraint-
Instance
Performance (CIP)

0 2 2842 1000 1000 840 2,0 0,30
2 4 3409 0742 0319 827 2,6 0,76
4 8 3992 0711 0261 1637 5,5 1,57
8 16 4550 0701 0208 3227 10,9 3,41
16 32 4303 0758 0232 6342 19,8 6,36
32 64 4214 0661 0163 12239 43,9 17,84
64 128 4292 0566 0127 23547 98,5 43,36
128 256 4378 0538 0115 44335 195,3 88,14
256 512 4392 0441 0081 78907 424,2 221,65
512 1024 4409 0329 0060 131876 948,7 495,77
1024 2048 4414 0280 0044 217935 1846,9 1117,62
2048 4096 4424 0204 0028 325744 3787,7 2626,97
4096 8192 4445 0114 0015 444817 9267,0 6541,43
8192 16384 4436 0083 0010 567820 16223,4 12343,91
16384 32768 4443 0050 0005 640852 30516,8 26702,17
32768 65536 4444 0019 0002 668062 83507,8 66806,20
65536 131072 4447 0019 0002 807333 100916,6 73393,91
131072 262144 4448 0036 0003 801842 53456,1 53456,13
excludes part of the information generated by ABSTAT related to
frequencies when it generates the shapes, as there is not a formal
way to represent it in SHACL. In opposition, sheXer uses it to
compute trustworthiness scores or filter infrequent features and
provides this information with textual comments.

Regarding automatic mappings between ontologies and
hapes, the authors in [19] propose using Ontology Design Pat-
erns (ODP) to obtain SHACL shapes. However, no actual map-
ings between SHACL and ODP are proposed. In [20], SHACL
nd OWL are thoroughly compared in terms of meaning and
xpressiveness. The authors also provide mappings between OWL
nd SHACL. These mappings can be used by proposals that aim to
xtract shapes from pure ontological content.
Astrea [21] is a tool to perform automatic extraction of shapes

rom ontologies. The authors produce SHACL content by mapping
ntology patterns into SHACL constructions. Astrea is a publicly
vailable tool based on the mappings of Astrea-KG.14 Astrea-KG’s
ontent allows generating SHACL shapes with an expressiveness
hat includes 60% of the total constraints available in SHACL.

SHACLerarner, a method to learn SHACL constraints based on
nverse Open Path rules (IOP), is presented in [14]. SHACLerarner
dapts Open Path Rule Learner (OPRL) [22] to extract IOP rules,
hich can be translated to SHACL. SHACLearner works with rules
etween entities in a KG, which causes that the shapes obtained
o not contain constraints related to literals.
In [23], a method to generate SHACL and ShEx shapes from

2RML documents is presented. R2RML is a W3C standard lan-
uage to enable automatic translation from Relational databases
o RDF documents. Since the generation of shapes is based on
2RML, this approach can be applied only in KGs whose genesis
s a mapped relational database. However, it achieves excellent
onformance with the target data model.
Some other previous works extract different schema notions

rom RDF graphs. In [24], the authors present an approach to
xtract frequent graph patterns conceptually similar to shapes,
hose aim is to characterize the content of RDF triple-stores. The
atterns are represented using an adaptation of Deep-First Search
ode. The authors in [25] extract Knowledge Patterns from KGs.
hese patterns are expressed in OWL and characterize classes by
etecting their frequent properties and providing an adequate
ange for them.

14 Endpoint to query Astrea KG: https://astrea.helio.linkeddata.es/sparql
ccessed in 2021/10/15.
8

5. Conclusion

In this paper, we have presented sheXer, a system to perform
automatic shape extraction based on KG mining. Our proposal
extract shapes by exploring the neighborhood of custom groups
of target nodes. Each extracted constraint is qualified with a
score that allows filtering infrequent elements, sorting results,
and providing extra information with textual comments. sheXer
can produce ShEx and SHACL content and compute big real-world
datasets.

Our system is based on an iterative mining strategy that avoids
loading in main memory the entire KG. The execution time and
peak of sheXer’s memory usage have a linear relation with the
number of triples relevant for the extraction process. However,
we have shown that the shapes obtained using large amounts
of instances tend to converge with shapes obtained using a rel-
atively low number of instances. This instance limit has a signif-
icantly positive effect both on memory consumption and execu-
tion time.

We contemplate several lines for future work regarding our
proposal:

• To produce and evaluate an implementation of sheXer using
parallel computing and alternative mechanisms to handle
memory.
• To perform a thorough comparison of sheXer with other au-

tomatic shape extraction systems, once an adequate public
benchmark for such a purpose is available.
• To include ontological information in sheXer’s workflow, so

the system can discard constraints that contradict ontology
information.
• To provide mechanisms for including shape inheritance in

the results, once this feature becomes stable in ShEx or
SHACL specifications.

CRediT authorship contribution statement

Daniel Fernandez-Álvarez: Conceptualization, Methodology,
Software, Formal analysis, Investigation, Writing – original draft.
Jose Emilio Labra-Gayo: Supervision, Conceptualization, Writing
– review & editing. Daniel Gayo-Avello: Supervision, Conceptu-
alization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

https://astrea.helio.linkeddata.es/sparql

D. Fernandez-Álvarez, J.E. Labra-Gayo and D. Gayo-Avello Knowledge-Based Systems 238 (2022) 107975

(

R

Acknowledgment

This work is supported by the Severo Ochoa Research Program
2017 call, exp. 1436 number BP17-88).

eferences

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S.
Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al., Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia, Semant. Web 6 (2)
(2015) 167–195.

[2] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase,
Commun. ACM 57 (10) (2014) 78–85.

[3] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, G. Weikum, Yago: A
multilingual knowledge base from wikipedia, wordnet, and geonames, in:
International Semantic Web Conference, Springer, 2016, pp. 177–185.

[4] A. Hogan, E. Blomqvist, M. Cochez, C. D’Amato, G. de Melo, C. Gutierrez,
S. Kirrane, J.E. Labra-Gayo, R. Navigli, S. Neumaier, A.-C. Ngonga Ngomo,
A. Pollers, S.M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, A.
Zimmermann, Knowledge graphs ? (?). DOI: (pending).

[5] E. Prud’hommeaux, J.E. Labra Gayo, H. Solbrig, Shape expressions: an
rdf validation and transformation language, in: Proceedings of the 10th
International Conference on Semantic Systems, 2014, pp. 32–40.

[6] H. Knublauch, D. Kontokostas, Shapes constraint language (shacl), W3C
recommendation 20 (07).

[7] J.E.L. Gayo, E. Prud’Hommeaux, I. Boneva, D. Kontokostas, Validating rdf
data, Synth. Lect. Semant. Web: Theory Technol. 7 (1) (2017) 1–328.

[8] J.E. Labra Gayo, D. Fernández-Álvarez, H. Garcıa-González, Rdfshape: An
rdf playground based on shapes, in: Proceedings of ISWC, 2018.

[9] D. Fernández-Alvarez, J.E. Labra-Gayo, H. Garcıa-González, Inference and
serialization of latent graph schemata using shex, 2016.

[10] D. Fernández-Álvarez, H. García-González, J. Frey, S. Hellmann, J.E.L. Gayo,
Inference of latent shape expressions associated to dbpedia ontology, in:
International Semantic Web Conference (P & D/Industry/BlueSky), 2018.

[11] F. Cifuentes-Silva, D. Fernández-Álvarez, J.E. Labra-Gayo, National budget
as linked open data: New tools for supporting the sustainability of public
finances, Sustainability 12 (11) (2020) 4551.
9

[12] A. Waagmeester, E.L. Willighagen, A.I. Su, M. Kutmon, J.E.L. Gayo, D.
Fernández-Álvarez, Q. Groom, P.J. Schaap, L.M. Verhagen, J.J. Koehorst, A
protocol for adding knowledge to wikidata: aligning resources on human
coronaviruses, BMC Biol. 19 (1) (2021) 1–14.

[13] I. Boneva, J. Dusart, D.F. Alvarez, J.E.L. Gayo, Shape designer for shex
and shacl constraints, in: ISWC 2019-18th International Semantic Web
Conference, 2019.

[14] P.G. Omran, K. Taylor, S.R. Mendez, A. Haller, Towards shacl learning from
knowledge graphs.

[15] J. Dean, S. Ghemawat, Mapreduce: a flexible data processing tool, Commun.
ACM 53 (1) (2010) 72–77.

[16] N. Mihindukulasooriya, M.R.A. Rashid, G. Rizzo, R. García-Castro, O. Corcho,
M. Torchiano, Rdf shape induction using knowledge base profiling, in:
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018, pp. 1952–1959.

[17] B. Spahiu, A. Maurino, M. Palmonari, Towards improving the quality of
knowledge graphs with data-driven ontology patterns and shacl, in: ISWC
(Best Workshop Papers), 2018, pp. 103–117.

[18] B. Spahiu, R. Porrini, M. Palmonari, A. Rula, A. Maurino, Abstat: ontology-
driven linked data summaries with pattern minimalization, in: European
Semantic Web Conference, Springer, 2016, pp. 381–395.

[19] H.J. Pandit, D. O’Sullivan, D. Lewis, Using ontology design patterns to define
shacl shapes, in: WOP@ ISWC, 2018, pp. 67–71.

[20] H. Knublauch, Shacl and owl compared, URL: https://spinrdf.org/shacl-and-
owl.html.

[21] A. Cimmino, A. Fernández-Izquierdo, R. García-Castro, Astrea: automatic
generation of shacl shapes from ontologies, in: European Semantic Web
Conference, Springer, 2020, pp. 497–513.

[22] P. Omran, K. Taylor, S. Rodríguez Méndez, A. Haller, Active Knowledge
Graph Completion, Tech. rep. Tech. rep., Australian National University,
2020, https://openresearch

[23] J.-W. Choi, Automatic construction of shacl schemas for rdf knowledge
graphs generated by r2rml mappings, J. Korea Soc. Comput. Inf. 25 (8)
(2020) 9–21.

[24] A. Basse, F. Gandon, I. Mirbel, M. Lo, Dfs-based frequent graph pattern
extraction to characterize the content of rdf triple stores, in: Web Science
Conference 2010 (WebSci10), 2010.

[25] E. Blomqvist, Z. Zhang, A.L. Gentile, I. Augenstein, F. Ciravegna, Statistical
knowledge patterns for characterising linked data, in: WOP, Citeseer, 2013.

http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb1
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb2
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb2
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb2
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb3
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb3
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb3
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb3
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb3
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb7
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb7
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb7
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb9
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb9
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb9
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb10
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb10
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb10
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb10
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb10
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb11
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb11
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb11
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb11
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb11
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb12
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb13
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb13
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb13
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb13
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb13
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb15
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb15
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb15
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb17
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb17
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb17
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb17
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb17
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb18
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb18
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb18
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb18
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb18
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb19
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb19
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb19
https://spinrdf.org/shacl-and-owl.html
https://spinrdf.org/shacl-and-owl.html
https://spinrdf.org/shacl-and-owl.html
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb21
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb21
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb21
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb21
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb21
https://openresearch
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb23
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb23
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb23
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb23
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb23
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb24
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb24
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb24
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb24
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb24
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb25
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb25
http://refhub.elsevier.com/S0950-7051(21)01097-2/sb25

	Automatic extraction of shapes using sheXer
	Introduction
	System description
	Graph iterator
	Instance tracker
	Feature tracker
	Shape adapter
	Extending cardinalities
	Sorting triple constraints

	Shape serializer
	Computational complexity analysis

	Experiments
	Limiting the number of instances used
	Limiting the number of target shapes
	Limit the amount of triples
	Convergence w.r.t. number of instances used

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

