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50 Diet is one of the main sources of exposure to toxic chemicals with carcinogenic 
51 potential, some of which are generated during food processing, depending on the type of 
52 food (primarily meat, fish, bread and potatoes), cooking methods and temperature. 
53 Although demonstrated in animal models at high doses, an unequivocal link between 
54 dietary exposure to these compounds with disease has not been proven in humans. A 
55 major difficulty in assessing the actual intake of these toxic compounds is the lack of 
56 standardised and harmonised protocols for collecting and analysing dietary information. 
57 The intestinal microbiota (IM) has a great influence on health and is altered in some 
58 diseases such as colorectal cancer (CRC). Diet influences the composition and activity 
59 of the IM, and the net exposure to genotoxicity of potential dietary carcinogens in the 
60 gut depends on the interaction among these compounds, IM and diet. This review 
61 analyses critically the difficulties and challenges in the study of interactions among 
62 these three actors on the onset of CRC. Machine Learning (ML) of data obtained in 
63 subclinical and precancerous stages would help to establish risk thresholds for the 
64 intake of toxic compounds generated during food processing as related to diet and IM 
65 profiles, whereas Semantic Web could improve data accessibility and usability from 
66 different studies, as well as helping to elucidate novel interactions among those 
67 chemicals, IM and diet. 
68
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99 1. Introduction 
100 Diet is one of the main sources of exposure to toxic compounds with carcinogenic 
101 potential. In October 2015 the International Agency for Research on Cancer from the 
102 World Health Organization (IARC-WHO) announced the classification of processed 
103 meat as “carcinogenic to humans” and red meat as “probably carcinogenic to humans” 
104 [1]. Diets from most developed countries are characterized by high intakes of meat, 
105 which is often fried, griddled or barbecued, and by an increasing consumption of 
106 processed foods. When cooking muscle meat from animals or fish at high temperature, 
107 some chemicals are formed at levels that depend on the cooking procedure and 
108 temperature; some of these compounds can cause cancer when administered at high 
109 doses in experimental animals [2]. However, although the intake of dietary compounds 
110 with carcinogenic potential in humans is considerably lower than in experimental 
111 animals, lifetime exposure can differ considerably among individuals. No regulations 
112 exist about the presence in foods of cooking -related potential carcinogens. This aspect 
113 is specially relevant for public health, as most cooking mutagen/genotoxic compounds 
114 are generated at home, restaurants and local ready-to-eat food providers. 
115 Despite that some international projects have evaluated the association between 
116 nutrition (including cooking methods) and cancer, such as the European Prospective 
117 Investigation into Cancer and Nutrition (EPIC) or the NIH-AARP Diet and Health 
118 Study, an unequivocal link between dietary exposure to chemicals and human cancer [3] 
119 has not been shown. The underlying reasons for this may be as follows: i) the difficulty 
120 to determine the exact exposure to  these compounds (depending not only on the intake 
121 but also on the cummulative exposure and delayed effect through life),  ii) 
122 interindividual variation in the detoxifying activity of endogenous enzymes, iii) 
123 cummulative exposure to toxic compounds from different environmental sources, iv) 
124 synergistic interaction among different  compounds and, v) the role, not sufficiently 
125 explored to date, of the interaction between diet and the intestinal microbiota (IM) on 
126 the net carcinogenic potential. Therefore, studies designed to explore these interactions 
127 could help to establish risk thresholds for disease as a function of dietary intake of 
128 potential carcinogens, global diet and microbiota. The present review analyses 
129 difficulties inherent to this type of studies and how Machine Learning (ML) and 
130 Semantic Web could assist in data modelling for risk assessment. 
131

132 2. Chemicals with carcinogenic potential formed during food cooking and 
133 processing 
134 One of the most important risk factors for the development of cancer is the exposure to 
135 dietary toxic chemicals with carcinogenic and pro-carcinogenic potential which, when 
136 consumed regularly at certain levels, can increase the risk of triggering tumourigenic 
137 processes. Nitrates, nitrites, nitrosamines (NA), heterocyclic amines (HCA), polycyclic 
138 aromatic hydrocarbons (PAH) and acrylamide, are amongst the substances with the 
139 highest carcinogenic potential. Some of these compounds are not naturally present in 
140 foods but can be incorporated (nitrates and nitrites) or generated (NA, HCA and PAH) 
141 during the processing of foodstuffs containing nitrogenous and creatine components by 
142 heat-direct exposure procedures [4]. HCA have accumulated solid scientific evidence as 
143 cancer risk factors and are the only carcinogens formed exclusively during the cooking 
144 process. Specifically, HCA show a mutagenicity index more than 1000 times higher 
145 than benzo(a)pyrene (BaP) [3]. Carcinogens may act through various mechanisms, such 
146 as chromosomal aberrations, single strand breaks and DNA adducts or oestrogenic 
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147 activity [5]. Several prospective cohort studies reported mean intakes of HCA between 
148 69.4 ng/day and 821 ng/day in European countries [6, 7] and from 49.95 ng/day to 
149 151.9 ng/day in Chinese communities and the United States [8, 9]. The observed 
150 variability among countries and individuals may be attributed to differences in the 
151 methodology used for the assessment of potential carcinogenic chemicals and to 
152 differences in dietary patterns and cooking preferences around the world. For example, 
153 compared to the 134.5 ng/day contribution of 50 g of broiled beef (0.00269 ppm/day), 
154 one daily serving of 50 g of broiled chicken could increase the intake of HCAs 
155 (PhIP+MeIQx) by 1350 ng/day (0.027 ppm/day) [10]. Induction of tumours in the large 
156 intestine of F344 rats and C57BL/6 mice have been demonstrated during prolonged 
157 exposure (40 to 72 weeks) to high concentrations of some HCA in diet (i.e. 300 
158 ppm/day) [2]. Although useful to demonstrate tumorogenic potential, experiments with 
159 animals are not intended to predict true human cancer incidence associated with 
160 exposure to chemicals. 
161 PAHs are found in cured and processed meat and fats, primarily [11]. Dietary exposure 
162 levels ranged from the order of ng/day in some Asian publications [12] to the order of 
163 μg/day reported in other publications [13]. BaP is the most-used marker to detect the 
164 presence of PAHs in foods [14, 15]. NA are detected in cured meat and smoked foods 
165 and are also endogenously formed from the interaction of nitrosating agents with 
166 amines and amides [16]. The intake of NA showed unclear relationships with 
167 pancreatic-cancer but positive associations with colorectal cancer (CRC) and gastric 
168 cancer [17, 18]. 
169 Nitrates and nitrites are often used as food additives in processed meats, fish, cheese, 
170 and fermented products, to  preserve them from microbial alteration  [19]. The 
171 simultaneous presence in certain foods of amino acids can lead to a chemical reaction 
172 that results in the formation of NA, especially when a heat treatment is applied; N-
173 nitrosopyrrolidine (NPYR) and N-nitrosodimethylamine (NMDA) are the NA most 
174 frequently found in foods [19]. Several studies have shown an increased risk of CRC 
175 development for NMDA intakes of 0.03 - 0.07 µg/day [20]. 
176 Acrylamide is formed by asparagine decarboxylation in the presence of reducing sugars 
177 during nonenzymatic browning (Maillard reaction) [21]. It  is naturally found in foods, 
178 but can  also form during the thermal treatment. In European countries, the major 
179 sources of acrylamide are potatoes, coffee and cereal products [22]. Acrylamide has 
180 been classified by the EFSA [23] as probably carcinogenic to humans. However,  there 
181 is still no regulation on the maximum recommended intake albeit there is a general 
182 recommendation to limit its consumption. 
183

184 3. Challenges to determine the actual intake of toxic chemicals with carcinogenic 
185 potential generated during food cooking and processing 
186 Recent meta-analyses of epidemiological studies are still not completely conclusive 
187 about the relationship of the intake of toxic compounds with carcinogenic potential 
188 resulting from food processing and cancer development [3] as it is complex to 
189 disentangle the effect of these compounds from the effect of the food itself. Most of the 
190 research revealing the impact of red and processed meat consumption in the relative risk 
191 of developing several chronic pathologies, such as CRC, prostate or lung cancer is the 
192 result of longitudinal epidemiological studies. Although these studies are useful from a 
193 descriptive point of view and for the generation of research hypotheses, they have a 



5

194 limited potential for the establishment of cause-effect relationships, leading to the 
195 continuing debate about the health impact of meat intake. 
196 A major difficulty in assessing quantitatively the actual intake of food potential 
197 carcinogens in the population is the selection of the most appropriate method for the 
198 collection of dietary data. The food frequency questionnaire (FFQ), multiple day food 
199 records and 24-hour dietary recall are among the most extensively used tools for this 
200 purpose. With independence to the systematic and random errors inherent to these 
201 methods [24], some factors such as the time period covered by the dietary 
202 questionnaires and the number of items included or the quantification of the portions 
203 consumed, affect the quality of the information collected and therefore the conclusions 
204 drawn. It is important to note that the risk of developing cancer from exposure to 
205 environmental factors, including diet and lifestyle, is cumulative over a subject's 
206 lifetime. For this reason, it seems more appropriate to use questionnaires with the 
207 capacity to describe long-term dietary habits, such as the FFQ. However, the FFQ has 
208 the disadvantage of providing less accurate information on energy and nutrient intake 
209 compared with the other methods mentioned above. In addition, some of the postulated 
210 mechanisms linking meat consumption to cancer risk include the content of these foods 
211 in HCA [4], PAH and other compounds generated during the high-temperature 
212 processing of foods, particularly in meats cooked at “well-done” degree [4]. Therefore, 
213 at the time of quantifying the intake of different toxic compounds with carcinogenic 
214 potential, it is important to detail in a harmonised way some characteristics related to 
215 the culinary preparation of foods, such as cooking time, processing method, temperature 
216 or degree of browning [11]. This is a strong add-on difficulty because it prolongs the 
217 duration of the baseline questionnaires, increasing the number of items included. In 
218 addition, the analysis of the information obtained is more complex than usual for the 
219 calculation of a nutrient, since for each of the foods surveyed, the type of processing 
220 (preservation or cooking) and the duration and temperature of cooking should be 
221 considered. The estimation of dietary compounds with carcinogenic potential can be 
222 extracted from information compiled in various databases. The most widely used 
223 databases are those developed by the EPIC study for the European population [25] and 
224 by the Computerized Heterocyclic Amines Resource for Research in Epidemiology of 
225 Disease (CHARRED) database for the United States [26]. Both databases provide key 
226 information for integrating the analysis of dietary potential carcinogens on a systematic 
227 basis. The EPIC database compiles information obtained from 139 references regarding 
228 the content per 100 g of food in NA, HAC, PAH, nitrites and nitrates in more than 200 
229 food items. The food composition table is classified according to the preservation 
230 method, cooking method, degree of browning and temperature [25]. This information is 
231 also present in the CHARRED database, which has developed a special module within a 
232 FFQ in conjunction with the mutagens database to estimate intake of the mutagenic 
233 compounds in cooked meats [26]. In adittion, acrylamide content was estimated from 
234 the EFSA categorisation of European food products for monitoring purposes [27]. 
235 A broader approach is necessary in the future in order to lay the foundations for 
236 improving the understanding of the complex diet-cancer association in the long term. 
237 This approach would require consensus on standardised and harmonised protocols for 
238 collecting dietary information, classifying the degree of cooking and calculating 
239 carcinogens derived from food processing. This method should be complemented with 
240 advanced tools for mathematical analysis of data that enable researchers to both identify 
241 risk factors for these pathologies and explain their impact in the complex context of a 
242 subject's global diet and lifestyles.
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243

244 4. Intestinal microbiota and human health. Methods to study composition and 
245 functionality 
246 The IM is defined as the set of microorganisms inhabiting the intestine. The microbiota 
247 has co-evolved with the host over thousands of years, leading to the establishment of a 
248 mutually beneficial microbiota-host relationship. The number of microorganisms in the 
249 human gut exceeds 1014 and this microbiota encodes a collection of genes ∼10 times 
250 greater than these encoded by the human genome, providing exclusive capabilities and 
251 functions essential for the maintenance of health. The role of the IM begins in early life, 
252 participating in the development of the host´s immune, digestive and nervous systems 
253 by strengthening intestinal epithelium integrity and gut barrier, protecting against 
254 pathogens and playing a major role in helping to harvest nutrients and energy from our 
255 diet. Therefore, the IM results in a key player for host physiology [28].
256 This IM represents a large factory producing bioactive compounds and participating in 
257 the host´s metabolism and nutrition. Actually, host metabolism is the combination of the 
258 capabilities of both the human and the IM genomes. The microbiota ferments 
259 indigestible complex carbohydrates and proteins from the diet producing short-chain 
260 fatty acids, primarily acetate, propionate and butyrate, which are quickly absorbed by 
261 the gut epithelial cells [29]. Acetate is primarily delivered to peripheral tissues for use 
262 as a substrate in the synthesis of cholesterol and fatty acids; propionate is absorbed in 
263 the liver and participates in gluconeogenesis; and butyrate is used as one of the main 
264 energy sources by colonocytes. Other metabolites are also produced by the IM such as 
265 branched chain fatty acids, secondary bile acids, amino acids, trimethylamine, 
266 neurotransmitters, and some essential vitamins [30, 31]. Some of these metabolites may 
267 suffer further transformations, such as the case of trimethylamine which, upon 
268 absorption will be oxidised in the liver to trimethylamine-N-Oxide, a known risk factor 
269 for cardiovascular disease. Therefore, all these metabolites participate in the host´s 
270 physiology and strong evidence now supports the role of the IM in the maintenance of 
271 human homeostasis. For this reason, adverse changes in the gut microbiota composition 
272 and/or function, the so-called dysbiosis, are related to different gastrointestinal 
273 disorders, such as diarrhoea, inflammatory bowel disease, cancer, or extra-intestinal 
274 diseases such as obesity, allergies, neurological sicknesses or other metabolic diseases. 
275 Different stressors, including dietary changes, antibiotic or other drugs treatments, and 
276 carcinogens from the diet can be involved in the development of dysbiosis.
277 Members of Bacteroidetes and Firmicutes phyla followed by Actinobacteria, 
278 Proteobacteria and Verrucomicrobia primarily make up the composition of the adult IM. 
279 However, at lower taxonomical levels, the complexity of the IM is higher and is 
280 represented by thousands of different microbial species. This diversity also occurs 
281 among individuals, making almost impossible the definition of a normal or healthy IM 
282 composition for an entire population. However, it is also known that the IM exhibits 
283 high functional redundancy, meaning that some functions may be conferred by multiple 
284 bacteria, from related and unrelated species, making the IM more conserved at the 
285 functional than at compositional level [32]. Accounting for this variability, some 
286 authors have tried to define the “normal or healthy” IM as the “intestinal microbial 
287 community that assist the host to maintain a healthy status under certain environmental 
288 conditions” [33], understanding that under different environmental conditions including 
289 dietary habits the optimal microbiota for health may also be different. For this reason, 
290 when we aim to assess the effect of a specific factor or a specific disease on the gut 
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291 microbiota, it is crucial to identify the specific alterations present in the gut microbiota 
292 composition but also on its functional properties, as well as the underlying mechanisms. 
293 Human faeces constitute in practice the biological samples from which the DNA, RNA 
294 and proteins are extracted in most cases to study the intestinal microbiota composition 
295 and function whereas metabolites and other chemical compounds can be extracted as 
296 well to analyze molecules produced by the microorganisms. Currently, the study of the 
297 IM involves using the new omics techniques based on high-throughput sequencing 
298 tools, also called second-generation sequencing technology. The DNA sequencing of 
299 the whole IM and the gene functions classifications are performed by metagenomics. 
300 Proteomics sequence the protein structures to determine cell metabolism through the 
301 activity of the cell enzymes. The analysis of molecules produced by bacterial 
302 metabolism is made by metabolomics, and transcriptomics studies the complete RNA 
303 molecules quantifying the dynamic expression of genes under different conditions. The 
304 effects of gut microbiota on the host are reflected in different aspects and the 
305 combinations of those multi-omics tools provide a new phase in the study of the IM and 
306 its physiological role, linking the composition of the IM with host metabolism, disease 
307 pathogenesis and predictions of therapeutic targets [34].
308

309 5. Intestinal microbiota dysbiosis is associated with colorectal cancer and pre-
310 cancerous states
311 Several studies have demonstrated that gut microbiota profiles from CRC patients are 
312 different from that of healthy individuals [35]. Generally, patients with CRC have 
313 decreased microbial diversity in faeces [36] and at the intestinal mucosa level [37]. It is 
314 currently not possible to define a common cancer-associated microbiota [11, 38]. 
315 However, although no individual member of the gut microbiota alone is sufficient to 
316 promote CRC, certain microbes have been associated with this type of cancer through 
317 the formation of harmful metabolites and the regulation of certain miRNAs, which then 
318 promote an oncogenic microenvironment. There is evidence of IM associations with 
319 CRC for Streptococcus bovis, which has been renamed Streptococcus gallolyticus, 
320 Fusobacterium nucleatum, Bacteroides fragilis, Enterococus faecalis and certain 
321 pathogenic strains from Escherichia coli [36]. However, it is not clear at present if these 
322 microorganisms are drivers or passengers in CRC. In addition, although some 
323 microbiota profiles have been associated with the onset and early progression of CRC, 
324 studies in this field are still scarce [39, 40]. Some members of the gut microbiota can 
325 produce microbial genotoxins such as colibactin by E. coli group B and fragylisin by B. 
326 fragilis. Other compounds with cytotoxic action, and potential involvement in the 
327 development of CRC are produced by intestinal microbes such as Salmonella enterica, 
328 Helicobacter pylori, F. nucleatum, B. fragilis, Pseudomonas aeuroginosa, 
329 Peptostreptococcus anaerobius and E. faecalis among others [11]. The microbial 
330 dysbiosis can also induce changes in host gene expression, subsequently favouring the 
331 development of CRC. 
332

333 6. Role of the intestinal microbiota on the genotoxic/mutagenic potential of 
334 dietary toxic compounds 
335 The genotoxicity is the capability to cause damage to the cellular genetic material, and 
336 more specifically mutagenicity is the capacity of genotoxic compounds to alter the 
337 DNA sequence, modifying the expression and functionality of genes. The genotoxicity 
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338 and/or the mutagenicity in faeces could be determined in an affordable way using some  
339 in vitro tests currently available [11]. 
340 It has been suggested that there is an association of inflammation with the faecal 
341 genotoxicity and CRC through the relationship existing between the gut microbiota and 
342 the innate immune system [38]. Early intestinal mucosal damage (dysplastic lesions, 
343 aberrant crypt foci, and/or intestinal polyps) can precede in years the development of 
344 CRC and these mucosal lesions could be considered early markers of risk for the 
345 development of CRC. Intestinal mucosal lessions are routinely examined for diagnostic 
346 purposes in patients submitted to colonoscopy at hospitals, allowing to differentiate 
347 neoplastic lesions, preneoplastic lesions and healthy intestinal mucosa.  
348 The efficiency of endogenous mechanisms of detoxification in the human body largely 
349 depends on the metabolic state of the host, and the type and levels of toxic compounds. 
350 Orally ingested toxic compounds initially reach the liver by direct gut wall absorption 
351 where they are detoxified through phase I (cytochrome P450 system) and phase II 
352 (sulphate, glutathione or glucuronide conjugates) enzymes and are subsequently stored 
353 in the gallbladder. Liver-generated detoxified potential carcinogens are poured again 
354 through the intestine by enterohepatic circulation during digestion (phase III) where 
355 they can be transformed by the gut microbiota. 
356 Faecal toxic compounds contributing to genotoxicity may have diverse origins. As 
357 commented before, some members of the intestinal microbiota can produce endogenous 
358 metabolites with genotoxic potential. Other compounds are formed endogenously by the 
359 metabolic activity of intestinal bacteria on dietary constituents such as nitrates, dietary 
360 amines and cholesterol, or are synthesized from precursors of the human metabolism 
361 such as the N-nitroso compounds, fecapentaenes, long-chain fatty acids and secondary 
362 bile acids. The production of these toxic compounds by the IM will depend not only on 
363 the microbiota itself but also on the host physiology, and the interaction of the IM with 
364 diet. In addition, other toxic substances arriving to the gut are of exogenous origin 
365 (foods) and include mycotoxins, plant glycosides, food additives, and the chemical 
366 compounds formed during cooking and food processing commented on previously. 
367 Studies using in vitro and in vivo models indicate that toxic dietary compounds, apart 
368 from their direct effect, could adversely affect the gut microbiota, modifying its 
369 diversity, composition and/or functionality, and affecting host-immunity and 
370 metabolism [35, 41, 42]. The IM can also modify the toxicity of these compounds by i) 
371 decreasing their toxicity through direct binding with the microorganisms and 
372 elimination with faeces, ii) metabolising and transforming them into less toxic 
373 compounds, iii) metabolising and transforming them into more toxically active 
374 molecules, and  iv) interfering with detoxifying mechanisms of the host, thus 
375 exacerbating their toxicity [11]. The most notable of these last interactions is that 
376 occurring during enterohepatic circulation when toxic molecules inactivated in phase II 
377 by conjugation to glucuronides in the liver, return to the intestine by enterohepatic 
378 circulation. There, the intestinal microbial glucuronidases, mostly from Enterobacteria, 
379 Clostridium and Bacteroides members, release the inactivated chemical compound from 
380 the glucuronide and subsequently turn it back into a toxic molecule. 
381 Global diet modulates the composition and functionality of the IM, influencing the way 
382 in which this microbial community interacts with dietary toxic compounds and with 
383 detoxifying mechanisms of the host, then contributing to increase or decrease in the 
384 intestinal toxicity. In this scenario, it would be possible to identify early shifts in 
385 microbiota patterns (composition and/or functionality) associated at variable degree 
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386 with increased intestinal toxicity, the intake of chemicals with carcinogenic potential 
387 and global diet. These modifications of the microbiota (even when they could represent 
388 adaptive processes) may be associated with abnormal changes of the intestinal mucosa 
389 that would represent an augmented risk for the subsequent development of CRC. The 
390 diversity of chemical structures of dietary toxic compounds and the difficulty to 
391 determine accurately their intake with diet substantially increase the challenge of 
392 teasing out individual chemical class influences on CRC. However, initial effort like 
393 those focusing on a specific and defined group of compounds, as those chemicals 
394 generated during food processing, would make the task more realistic and affordable. 
395 These compounds could be assessed by means of dietary interviews that include 
396 cooking/preparation procedures, duration and temperature of the process, and the use of 
397 specific food composition databases.
398 Our hypothesis is that beyond differences in genetic susceptibilities, metabolic states 
399 and the inherent variability of microbiota profiles among individuals and human groups, 
400 the net exposure to dietary molecules with carcinogenic potential will depend on the 
401 type of compound, doses, frequency of consumption and lifetime exposure. These 
402 factors will be modified by  food preparation procedures, which will be closely related 
403 to the amount of compound ingested, the global dietary patterns and IM profile of 
404 subjects. Therefore, risk thresholds for CRC could be established as a function of gut 
405 genotoxicity, IM and diet (global dietary patterns and toxic molecules intake), 
406 considering precancerous or cancerous mucosal changes as an outcome variable. 
407 ML and Semantic Web are important tools that could assist in the treatment and 
408 modelling of such data in order to categorize the risk (Fig. 1).  
409 The identification of changes in the microbiota associated with the intake of toxic 
410 compounds with carcinogenic potential could be useful to elaborate guidelines for food 
411 processing and dietary recommendations. 
412

413 7. ML: a tool to assess risk by dietary exposure

414 ML can be considered a branch of artificial intelligence, as it attempts to use computers 
415 to complement human intelligence [43]. ML has become an essential tool for 
416 biomedical research and the modern healthcare system, given that the amount of 
417 medical and biological data requiring analysis has increased abruptly in the last years, 
418 and some ML methods have shown their ability for solving complex problems. 
419 A key objective of any learning algorithm is to build models with good generalization 
420 capability [44]. Thus, the classification procedure is a cornerstone in any predictive 
421 problem. In addition, there is not a standard classification method to date. Different 
422 methods could be applied to design the prediction model. A decision tree (DT) is a 
423 mathematical tree where the internal nodes are tests on the variables that define the 
424 inputs and the leaf nodes are classes. C5.0, C4.5, CART or Random Forests (RF) are 
425 examples of this kind of ML. Lazy learners such as k-Nearest Neighbours (KNN) are 
426 based on learning by comparing a given test example with each training example. 
427 Artificial Neural Networks (ANN) are inspired in biological neural networks. Kernel 
428 methods as Support Vector Machines (SVM) are based on the idea of embedding the 
429 data into a high dimensional feature space using the kernel [45].
430 ML has been applied to dietary studies and for deciphering the effect of the exposure to 
431 pollutants and carcinogens. Thus, Chatterjee et al. [46] identified potential risk factors 
432 for preventing obesity using a broad set of different ML techniques. In another work 
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433 [47] the mutual interactions between diet, microbiota, metabolic responses and the 
434 immune system were developed using a ML-based method. In a similar way, we 
435 employed DT to study the interactions between serum free fatty acids and faecal 
436 microbiota [48]. Gut microbiota was also identified as a factor in predicting 
437 personalised postprandial glycaemic response to real-life meals, obtaining an accurate 
438 prediction with boosting DT [49]. An oral malodour classifier was developed as a 
439 function of the oral microbiota in saliva, with SVM, ANN and DT,  and SVM being the 
440 most accurate [50]. The decline of Akkermansia muciniphila was identified as a 
441 common dysbiotic marker linked to disease status by using DTs [51]. Cammarota et al. 
442 [52] recently highlighted the importance of the gut microbiome and the need of 
443 applying ML to analyse the considerably quantity of complex health care data in cancer 
444 research. 
445

446
447
448 Figure 1. Schematic representation of risk assessment by exposure to dietary 
449 toxic compounds formed during food cooking and processing as a function of 
450 the IM, diet and intestinal toxicity, applying ML and Semantic Web. The net 
451 exposure to toxic compounds depends on the intake and time of exposure and this 
452 influences the genotoxicity at the intestinal environment. IM and global diet could 
453 modify the resulting toxicity of dietary chemicals. Prolonged exposure to high 
454 intestinal toxicity levels could lead to changes in the intestinal mucosa that may be 
455 accompanied by shifts in the intestinal microbiota. Applying ML to dietary and 
456 microbiota data in silent, subclinical and precancerous stages of intestinal mucosal 
457 damage could assist in CRC risk assessment whereas Semantic Web will facilitate 
458 data accessibility and management. 

459 Therefore, ML has proven to be an efficient tool to identify some key factor 
460 relationships associated with diet, health parameters and lifestyles with the microbiota 
461 and disease [48-51]. Although no general rule exists a priori indicating which ML 
462 method is the best, depending on a given problem, it is expected that ML could 
463 successfully contribute to establishing risk thresholds for CRC as a function of the 
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464 intake of chemicals with carcinogenic potential, global diet, intestinal genotoxicity and 
465 shifts in microbiota profiles. In summary, ML is able to consider factors from different 
466 sources (such as those related to ingested of potential carcinogens, diet and IM), select 
467 the most relevant ones and use them to predict the risk of CRC. A general workflow of 
468 the process is provided in Fig. 2. 
469

470 8. Worked example of a ML process for CRC risk assessment 
471 Since real data on diet, intake of toxic chemicals, intestinal microbiota and fecal 
472 genotoxicity/mutagenicity are not yet available in a single database, a conceptual design 
473 is proposed using previously published variables corresponding to the metabolism of 
474 healthy people and people with CRC.
475 Dataset. The dataset employed is a subset of the Colorectal Cancer Detection Using 
476 Targeted Serum Metabolic Profiling experiment from University of Washington. These 
477 data are available at https://www.metabolomicsworkbench.org/. 

478 The dataset is composed by 234 individuals and 124 variables. For this example, 
479 Diagnosis is the target variable, that is recoded as a binary variable representing if each 
480 example presents colorectal cancer or not. Since real data are not yet available, a 
481 conceptual design is proposed using previously published variables corresponding to the 
482 metabolism of healthy people and CRC. From the total of existing variables in the 
483 repository, we have selected those that could be directly correlated with the diet (sugars, 
484 aminoacids, fatty acids and other compounds of interest) and including some 
485 anthropometrical variables related with diet and health, as the BMI. In addition, from 
486 the 124 variables, we have selected the following as predictive ones to run this example: 
487 "Acetylcholine" "Alanine" "Asparagine" "Aspartic_Acid" "Biotin" "Glutamic_acid" 
488 "Glutamine" "Histidine" "Linolenic_Acid" "Lysine" "Methionine" "MethylSuccinate" 
489 "Pyruvate" "Tryptophan" "BMI"

490 The following tables show basic statistics for these variable set depending on the value 
491 of the target variable.

HEALTHY
VARIABLE min mean max
ACETYLCHOLINE 227140.38 1944056.93 3933866.8
ALANINE 4029094.49 6339425.03 10736506.9
ASPARAGINE 446544.10 697142.28 926673.2
ASPARTIC_ACID 367199.83 1207280.26 2736972.2
BIOTIN 70262.10 134817.68 218108.1
GLUTAMIC_ACID 696905.02 2101133.59 4333471.5
GLUTAMINE 23520246.16 32222162.15 42570355.8
HISTIDINE 10280560.84 18694498.58 29272649.1
LINOLENIC_ACID 403397.25 865422.94 1610396.2
LYSINE 5435894.46 10117619.23 13735189.6
METHIONINE 306713.00 732652.67 1004676.9
METHYLSUCCINATE 801214.57 1303371.84 1856837.4
PYRUVATE 55107.82 174507.45 429810.3
TRYPTOPHAN 501607.00 3715594.49 5471963.8

https://www.metabolomicsworkbench.org/data/DRCCStudySummary.php?Mode=SetupRawDataDownload&StudyID=ST000284
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BMI 20.00 27.58 42.0
492

COLORECTAL CANCER
VARIABLE min mean max
ACETYLCHOLINE 712642.00 1755303.59 3723973.0
ALANINE 2910976.71 5640811.77 9555174.6
ASPARAGINE 456356.62 656879.58 1052985.7
ASPARTIC_ACID 377375.66 1636515.34 4411499.3
BIOTIN 63989.62 123128.62 228928.5
GLUTAMIC_ACID 916836.31 2683576.11 6559485.0
GLUTAMINE 16182419.38 29168842.58 36269190.5
HISTIDINE 8189632.57 14905491.46 25936858.0
LINOLENIC_ACID 167055.75 662328.07 1213540.7
LYSINE 5237148.72 8703904.55 12749510.4
METHIONINE 338104.80 617976.05 1045772.3
METHYLSUCCINATE 825623.96 1207703.72 1885528.9
PYRUVATE 64219.18 199196.83 458775.4
TRYPTOPHAN 1785060.16 3451357.71 5410601.2
BMI 17.00 25.35 32.0

493

494 Preprocessing. As it is well known that some ML methods are quite sensitive to 
495 variable scale, continuous variables were normalized. In addition, missing values were 
496 treated using K-nearest neighbor imputation.

497 Classification and evaluation. As it was highlighted before, a key objective of any 
498 learning algorithm is to build models with good generalization capability, which is 
499 equivalent to look for models that accurately predict the class labels of previously 
500 unknown examples. Therefore, the classification procedure is a cornerstone in any 
501 predictive problem. In addition, there is no a standard classification method so far. 
502 Thus, several different methods were tested to select the one performing the best for this 
503 task, taking into account the trade-off between performance and interpretability. The 
504 methods considered in this worked example are a tree based method (C4.5), a lazy 
505 learners (Knn), a Neural Network (in particular, multilayer perceptrons, MLP) and a 
506 support vector machine with radial kernel.

507 Training a ML method is as complex as necessary to avoid overfitting and to correctly 
508 optimize the different hyperparameters associated to each method. In this case we have 
509 applied cross-validation with 10 folds. During the cross validation process, the specific 
510 parameters associated to each method have been optimized using the default 
511 configuration.

512

513

514

Sensitivity Specificity
J48 0.75 0.63
SvmRadial 0.80 0.62
Knn 0.87 0.87
MLP 0.71 0.64
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515 From the results obtained, it is clear that the method performing better according to both 
516 Sensitivity and Specificity is KNN. The value of k was 9. Note that this parameter is set 
517 experimentally in training phase. It is well known that KNN does not provide 
518 information about the features providing this classification. Thus, using this method, it 
519 is only possible to predict if an example is labelled as Healthy or having CRC. The 
520 same occurs with MLP and SvmRadial. As a consequence, if one is interested in 
521 analyzing the factors helping in the prediction, a model based on decision trees should 
522 be selected. The one employed here is C4.5. In this example, the model produced is the 
523 following:

524

525 From the initial set of variables, "Acetylcholine", "Alanine", "Asparagine", 
526 "Aspartic_Acid" "Biotin", "Glutamic_acid", "Glutamine", "Histidine", 
527 "Linolenic_Acid", "Lysine" "Methionine", "MethylSuccinate", "Pyruvate", 
528 "Tryptophan" , "BMI", C4.5 detects Histidine, Linolenic_Acid, Methionine and Pyruvate 
529 as relevant variables for predicting CRC.

530 All the experiments in this worked example were performed using RStudio 1.3.1093, R 
531 4.0.3 and caret package, version 6.0-86.

532

533 Figure 2. General workflow of a Machine Learning process for CRC risk 
534 assessment as a function of diet, microbiota and intestinal genotoxicity. Data 
535 from diet (FFQ), microbial metabolites, microbiota composition, microbial gene 
536 functions, and genotoxicity/mutagenicity (faeces) and biopsia analyses of the 
537 intestinal mucosa (routine colonoscopies at hospitals) are collected in a joint 
538 database and submitted to a ML process. Some ML models (such as DT, on bottom-
539 left) allow establishing profiles and thresholds related to the input variables, while 
540 others (such as ANN, on bottom-right) are more difficult to interpret but are 
541 successful predictors. 
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543 9. Using Semantic Web to connect and to exploit data 

544 The Semantic Web vision has supposed a shift of persistence, modelling and 
545 interoperability of data [53]. Being able to represent entities unambiguously, link them 
546 and integrate different data-sources in a single representation, has enabled a new set of 
547 semantic-aware applications. These computer science advances are ready to be applied 
548 to different fields. Specifically, in the bio-computational field, some works have 
549 explored its use i) to describe human and mouse genes [54], ii) to offer a platform that 
550 eases the consumption and curation of genome data [55], iii) to integrate different drug 
551 data-sources [56], iv) to provide a platform to analyse the course of diseases [57]. 
552 Therefore, we envisage next challenges using Semantic Web technologies to model and 
553 to exploit data from nutrition and microbiota interaction studies (Fig.3).
554 One of the main problems facing the exploitation of data from these type of studies is 
555 the existence of many heterogeneous data-sources with their own data models that 
556 cannot be integrated easily with others. This issue prevents obtaining conclusions of the 
557 joint-analysis of data from different studies. To alleviate this problem, some ontologies 
558 were proposed which ensure that all data providers are talking about the same domain 
559 [58]. For example, FoodOn [59] for data integration of food traceability and quality 
560 control is a very specific ontology that offers a great basis for reusability. In contrast, 
561 ONS [60] is a general ontology for nutrition studies that can be tuned with specific 
562 elements if necessary. Alongside the creation of well-defined ontologies, there arises the 
563 need for tools able to migrate non-semantic data to these new semantic standards. 
564 Recent development of heterogeneous data mapping tools in the Semantic Web has 
565 supposed a new paradigm in knowledge graph creation methodologies [61], offering 
566 reusability, maintainability and a better user-experience. The use of these tools can 
567 deliver a faster migration of non-semantic datasets to a knowledge graph in which all 
568 desired studies can be integrated. This will offer the possibility to analyse all data 
569 together, make it accessible, and preserve it for future uses, which is in keeping with 
570 FAIR (Findable, Accessible, Interoperable and Reusable data) principles [62]. 
571

572
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573 Figure 3. Semantic Web schema and technological stack proposed for 
574 microbiota and diet studies. Each concentric circumference represents a 
575 layer/process in the technological stack; these layers are independent and can work 
576 by themselves. The layer stacking means that an upper layer contains the lower ones 
577 and need for them to be complete and coherent. Different coloured graphs represent 
578 graphs from different sources, which are not yet integrated. Orange and yellow 
579 patterns in the validation phase represent the mechanism of validation and 
580 normalization of the aforementioned heterogeneous graphs, which connect to a 
581 unique and integrated knowledge graph.
582

583 Although a well-defined ontology can enable interoperability and integration of 
584 different datasets, we must also ensure that different pieces of data follow the same 
585 shape, which will derive in a cleaned and normalised graph and, therefore, an easier one 
586 to query. The use of Resource Description Framework (RDF) [63] validation 
587 technologies was explored in Fast Healthcare Interoperability Resources (FHIR) 
588 specification [64] to not only validate data but to share data models among humans and 
589 machines [65]. Therefore, using ontologies, we can define the meta-knowledge of the 
590 domain, e.g., the category’s relationships between different mutagens, nutrients or 
591 bacteria; using RDF validation techniques we can ensure certain rules, e.g., that a value 
592 is between certain limits or that a nutrient has a certain number of attributes.
593 Once various datasets are converted, validated—using the aforementioned techniques—
594 and their semantics defined using a proper ontology, new results could be delivered. 
595 Thanks to ontology axioms it is possible to generate inferences on pre-existing 
596 knowledge in order to reveal non-evident and underlying content, which could be 
597 obviated [66]. For example, if we define Bacteroides fragilis we know that it also 
598 belongs to the categories Bacteroides (genus), Bacteroidaceae (family), Bacteroidales 
599 (order), Bacteroidia (class) and Bacteroidetes (phylum); however, this information is 
600 not evident for a machine. Thus, the inference system will fill these upper categories, so 
601 all data is complete and can be easily integrated. In addition, the graph data model used 
602 by RDF enables a different data modelling—in contrast with the normally used tabular 
603 form—, that by means of SPARQL—the advocated RDF query language—could reveal 
604 new relationships previously obviated [67]. This simplifies the modelling of the former 
605 example in which we have multiple categories, and consequently we wish that  B. 
606 fragilis were shown when asking for a Bacteroidetes, and a Bacteroidaceae, among 
607 others. Doing the same modelling in tabular form would imply considerably more 
608 complicated structures that can be error-prone.
609 Finally, this methodology offers the possibility to not only improve analysis techniques 
610 and discover hidden content but also to transfer part of this knowledge and make it 
611 accessible for the public. The emergence of projects as Wikidata [68] enables the 
612 creation of general-purpose knowledge graphs integrating data that could be interesting 
613 for the entire world and that is curated by users. It is possible, by taking advantage of 
614 proposed conversions, to publish interesting conclusions of involved studies in the so-
615 called semantic eScience [69]. This approach may be employed for the achievement of 
616 FAIR principles but also to achieve a transference and dissemination effort, which could 
617 lead to a relief in the ongoing reproducibility crisis [70].
618

619
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620 10. Summary and Outlook 

621 The net exposure to dietary toxic compounds, and the intestinal genotoxicity generated, 
622 depends on the intake and time of consumption and on their interaction with the IM and 
623 global diet. The IM of individuals with CRC differs from that of healthy people, but 
624 studies relating the consumption of carcinogens with adverse early shifts of microbiota 
625 (either beneficial adaptive or adverse changes) are very scarce. The complexity of data 
626 and the several variables potentially affecting these interactions may hinder the 
627 interpretation of the studies. In this context, the application of ML to the data obtained 
628 in subclinical and precancerous stages of the intestinal mucosa could help to analyse the 
629 risk for development of CRC associated to the intake of carcinogens as a function of 
630 diet and microbiota profiles. Moreover, the use of the recently developed Semantic Web 
631 approaches could improve data accessibility and management, contributing to evidence 
632 of new interactions among carcinogens, microbiota, and diet (Fig. 1). 
633
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