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Abstract:  

Urgent global research demands real-time dissemination of precise data. Wikidata, a collaborative and openly              
licensed knowledge graph available in RDF format, provides a forum for exchanging structured data. In this                
research paper, we catalog the rules describing relational and statistical COVID-19 epidemiological data and              
implement them in SPARQL, a query language for semantic databases. We demonstrate the efficiency of our                
methods to evaluate structured information, particularly COVID-19 knowledge in Wikidata, and consequently in             
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collaborative ontologies and knowledge graphs, and we show the advantages and drawbacks of our proposed               
approach by comparing it to other methods for validation of linked web data. 

Keywords: SPARQL, Public health surveillance, Wikidata, Knowledge graph refinement, COVID-19, Validation           
constraints 

1. Introduction  

Since December of 2019, the COVID-19 disease has spread to become a global             

pandemic. This disease is caused by a zoonotic coronavirus called SARS-CoV-2 (Severe Acute             

Respiratory Syndrome CoronaVirus 2) and is characterized by the onset of acute pneumonia             

and respiratory distress. The global impact, with more than 23 million infections and 800              

thousand deaths globally (as of August 25, 2020 ), is frequently compared to the 1918              1

Spanish Flu (Krishnan, Ogunwole, & Cooper, 2020). As with all zoonotic diseases, its abrupt              

introduction to humans demands an outsized effort for data acquisition, curation and            

integration to drive evidence-based medicine, predictive modeling and public health policy           

(Dong, Du, & Gardner, 2020; Xu, Kraemer, & Group, 2020). 

Agile data sharing and computer-supported reasoning about the COVID-19 pandemic          

and SARS-CoV-2 virus allow us to quickly learn more about the disease’s epidemiology,             

pathogenesis, and physiopathology and to inform the required clinical, scholarly and public            

health measures to fight the condition and handle its non-medical ramifications (Heymann,            

2020; Mietchen & Li, 2020; RDA COVID-19 Working Group, 2020). Consequently, initiatives            

have rapidly emerged to create datasets, web services and tools of data visualization and              

analysis related to COVID-19, including John Hopkins University’s COVID-19 dashboard          

(Dong, Du, & Gardner, 2020) and the Open COVID-19 Data Curation Group’s epidemiological             

data (Xu, Kraemer, & Group, 2020). Some of these resources are interactive and return their               

results based on combined clinical and epidemiological information, scholarly information          

and social network analysis (Cuan-Baltazar, et al., 2020; Ostaszewski, et al., 2020; Kagan,             

Moran-Gilad, & Fire, 2020). 

Although these resources are mostly free to access, most are issued under All Rights              

Reserved terms or licenses. Similarly, 60635 (>80%) of the 74290 COVID-19-related projects            

on the GitHub repository for computing projects are under All Rights Reserved terms (as of               2

5 August 2020), which severely impedes publication of integrated data (which ultimately            

undermines their value). These legal barriers block the free reuse and integration of various              

types of datasets and computer applications needed to achieve better analysis of COVID-19             

data. There is therefore a clear need for a collaborative, free, machine-readable, and open              

knowledge graph integrating many varieties of information related to COVID-19 and           

SARS-CoV-2 for the computer-based enhancement of sustainable efforts for fighting the           

pandemic.  

1 "COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 
(JHU)". ArcGIS. Johns Hopkins University. Retrieved 25 August 2020. 
2 60635 of 74290 as of 2020-08-05: 
https://github.com/search?q=covid-19+OR+covid19+OR+coronavirus+OR+cord19+OR+cord-19  
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Wikidata fits just such a need as a CC0 licensed, large-scale, multilingual knowledge             3 4

graph used to represent human knowledge in a structured format (Resource Description            

Framework or RDF) (Vrandečić & Krötzsch, 2014; Turki, et al., 2019). It therefore has the               

advantage of being inherently findable, accessible, interoperable, and reusable, i.e. FAIR           

(Waagmeester, et al., 2020a). It was initially developed in 2012 as an adjunct to Wikipedia               

but has grown significantly beyond its initial parameters. It is now a centralized,             

cross-disciplinary meta-database and knowledge base for storing structured information in a           

format optimized to be easily read and edited by both machines and humans (Erxleben,              

Günther, Krötzsch, Mendez, & Vrandečić, 2014). Thanks to its flexible representation of            

facts, Wikidata can be automatically enriched using information retrieved from multiple           

public domain sources or inferred from synthesised data (Turki, et al., 2019). This database              

includes a wide variety of pandemic-related information, including clinical knowledge,          

epidemiology, biomedical research, software development, geographic, demographic and        

genetics data and can consequently become a useful large-scale reference database to            

support research and medicine during the COVID-19 pandemic (Turki, et al., 2019;            

Waagmeester, et al., 2020a). 

However, several features of projects such as Wikidata can make them at-risk of             

inconsistent structure or coverage: 1) collaborative projects use decentralised contribution          

rather than central oversight, 2) large-scale projects operate at a scale where manual             

checking is not possible, and 3) interdisciplinary projects draw from and integrate a wide              

variety of data sources. To maximise usability of the data, it is therefore important to               

minimise inconsistencies in its structure and coverage. As a result, methods of evaluating the              

existing knowledge graphs and ontologies, integral to knowledge graph maintenance and           

development, are of crucial importance. Such an evaluation is particularly relevant in the             

case of collaborative semantic databases, such as Wikidata.  

Knowledge graph evaluation is a process to assess the quality, correctness, or            

completeness of a given knowledge graph against a set of predetermined criteria (Amith, He,              

Bian, Lossio-Ventura, & Tao, 2018). There are a number of possible approaches to the task,               

including comparing the evaluated knowledge graph to a paragon one, using the evaluated             

knowledge graph and judging the resulting outcomes, conducting an analysis of coverage in             

the evaluated knowledge graph and comparing it to the source data, and expert reviews of               

the evaluated ontology against certain chosen criteria (Brank, Grobelnik, & Mladenic, 2005).  

Different systematic approaches have been proposed for the comparison and          

evaluation of ontologies and knowledge graphs, including NLP techniques, machine learning,           

association rule mining, and other methods (Lozano-Tello & Gomez-Perez, 2004; Degbelo,           

2017; Paulheim, 2017). Ontology-based and knowledge graph-based software tools have the           

potential to provide data and platform interoperability, and thus, their semantic           

interoperability is relevant for downstream applications such as IoT and WoT technologies            

3 https://www.wikidata.org/  
4 CC0 is a rights waiver similar to Creative Commons licenses, used to publish material into the public domain. It 
waives as much copyright as possible within a given jurisdiction. Further information can be found at 
https://creativecommons.org/publicdomain/zero/1.0/ 
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(Gyrard, Datta, & Bonnet, 2018). The criteria for evaluating ontologies typically include:            

Accuracy, which determines if definitions, classes, properties and individual entries in the            

evaluated ontology are correct; Completeness, referring to the scope of coverage of a given              

knowledge domain in the evaluated ontology; Adaptability, determining the range of           

different anticipated uses of the evaluated ontology (versatility); and Clarity, determining           

the effectiveness of communication of intended meanings of defined terms by the evaluated             

ontology (Vrandečić, 2009; Obrst, Ceusters, Mani, Ray, & Smith, 2007; Raad & Cruz, 2015;              

Amith, et al., 2018).  

SPARQL was officially created in 2008 as a query language and protocol to search,              

add, modify or delete RDF data available over the Internet. Its name is a recursive acronym                

which stands for "SPARQL Protocol and RDF Query Language". SPARQL allows a query to be               

composed of triple patterns, conjunctions, disjunctions, and optional patterns and can           

consequently be used to retrieve contextualized information from knowledge graphs. As it            

has been designed to extract a searched pattern from a semantic graph (Pérez, Arenas, &               

Gutierrez, 2009), SPARQL queries have also been used to query the competency questions ,             
5

so as to evaluate ontologies and knowledge graphs in a context-sensitive way            

(Vasanthapriyan, Tian, & Xiang, 2017; Bansal & Chawla, 2016; Martin, 2018). Indeed, a sister              

project presents how SPARQL can be used to generate data visualisations (Nielsen,            6

Mietchen & Willighagen 2017; Addshore, Mietchen & Willighagen, 2020). Validating RDF           

data portals using SPARQL queries has been regularly proposed as an approach that gives              

great flexibility and expressiveness (Labra Gayo & Alvarez Rodríguez, 2013). However,           

academic literature is still far from revealing a consensus on methods and approaches to              

evaluate ontologies using this query language (Walisadeera, Ginige, & Wikramanayake,          

2016), and other approaches have been proposed for validation (Thornton, et al., 2019;             

Labra-Gayo, et al., 2019). 

In this research paper, we catalogue logical constraints for the statement and            

dissemination of COVID-19 semantic data. We implement them with SPARQL and test them             

on Wikidata using the SPARQL endpoint of this knowledge graph, available at            

https://query.wikidata.org. We introduce the value of Wikidata as a multi-purpose          

collaborative knowledge graph for the flexible and reliable representation (Section 2) and            

validation (Section 3) of COVID-19 knowledge. We cover the use of SPARQL to query this               

knowledge graph (Section 4). Then, we demonstrate how logical constraints can be captured             

in structural schemas and consequently used to validate and encourage the consistent usage             

of relation types to represent COVID-19 knowledge (Section 5) and we show how statistical              

constraints can be applied to verify epidemiological data related to the pandemic (Section 6).              

5 Competency questions: A set of requirements ensuring consistency of a knowledge graph, constraints 
determining what knowledge to be involved in a knowledge graph (Wiśniewski, Potoniec, Ławrynowicz, & 
Keet, 2019).  
6 For SPARQL-based visualizations of COVID-19 information in Wikidata, see https://speed.ieee.tn/, 
https://egonw.github.io/SARS-CoV-2-Queries/, 
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries, and 
https://scholia.toolforge.org/topic/Q84263196. 
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Finally, we compare our constraint-based approaches with other methods (Section 7), and            

draw conclusions for future directions (Section 8).  

2. Wikidata as a collaborative knowledge graph 
Wikidata currently serves as a semantic framework for a variety of scientific            

initiatives, such as GeneWiki (Burgstaller-Muehlbacher, et al., 2016), allowing different          

teams of scholars to upload valuable academic data into a collective and standardized pool.              

Its versatility and interconnectedness are making it a standard for inter-disciplinary data            

integration and dissemination across fields as diverse as linguistics, information technology,           

film studies, or medicine (Turki, et al., 2019; Mitraka, et al., 2015; Mietchen, et al., 2015;                

Waagmeester, Schriml, & Su, 2019, Turki, Vrandečić, Hamdi, & Adel, 2017; Wasi, Sachan, &              

Darbari, 2020; Heftberger, Höper, Müller-Birn, & Walkowski, 2020), although its popularity           

and recognition across fields still vary significantly (Mora-Cantallops, et al., 2019). 

It contains concepts, linked by their taxonomic relations, allowing embedding and           

creating instances of subclasses of classified data and links between them. Because of its              

multilingual nature, it is particularly useful for dynamic data reuse, as well as complex,              

multi-criteria data queries, and helps both in a rapid reduction of inaccuracies across             

Wikipedias, as well as in their fast-updating (Müller-Birn, Karran, Lehmann, & Luczak-Rösch,            

2015), and generally seems to be less prone to local culture (Miquel-Ribé & Laniado, 2018)               

and language biases (Kaffee, et al., 2017) that are visible on Wikipedia (Jemielniak &              

Wilamowski, 2017). 

The data structure employed by Wikidata is intended to be highly standardized,            

whilst maintaining the flexibility to be applied across highly diverse use-cases. There are             

mainly two essential components: Items, which represent objects, concepts or topics; and            

properties, which describe how one item relates to another. A statement, therefore, consists             

of a subject item (S), a property that describes their nature of the statement (P), and an                 

object (O) that can be an item, a value, an external ID, or a string, etc. While items can be                    

freely created, new properties require community discussion and vote, with 7851 properties           

currently available. Statements can be further modified by any number of qualifiers to              
7

make them more specific and be supported by references to indicate the source of the               

information. 

Thus, Wikidata forms a continuously growing, single, unified network graph, with           

88M items forming the nodes, and 1127M statements forming the edges. A live SPARQL              
8

endpoint and query service, regular RDF dumps, as well as linked data APIs and visualization               

tools, form a backbone of Wikidata uses (Malyshev, Krötzsch, González, Gonsior, &            

Bielefeldt, 2018; Nielsen, Mietchen, & Willighagen, 2017). 

Importantly, Wikidata is based on free and open-source philosophy and software and            

is a database that anyone can edit, similarly to the very popular online encyclopedia,              

7 For an updated list of available Wikidata property, please see https://tools.wmflabs.org/hay/propbrowse/. 
8 To track the evolution of the number of Wikidata statements, please see 
https://grafana.wikimedia.org/d/000000182/wikidata-datamodel-references?orgId=1&refresh=30m. 
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Wikipedia (Jemielniak, 2014). As a result, the emerging ontologies are created entirely            

collaboratively, without a centralized coordination center (Piscopo & Simperl, 2018), and           

developed in a community-driven fashion (Samuel, 2017). This approach allows for the            

dynamic development of areas of interest for the user community but poses challenges, e.g.,              

to systematic and proportionate class completeness across topics (Luggen, Difallah, Sarasua,           

Demartini, & Cudré-Mauroux, 2019). Also, since the edit history is available to anyone,             

tracing human and non-human contributions, as well as detecting and reverting vandalism is             

available by design and relies on peer control (Pellissier Tanon & Suchanek, 2019).  

Other ontological databases and knowledge graphs exist (Färber, Bartscherer,         

Menne, & Rettinger, 2018; Pillai, Soon, & Haw, 2019). However, much like the factors that               

led Wikipedia to rise to be a dominant encyclopedia (Shafe, et al.,2017; Jemielniak &              

Wilamowski, 2017), Wikidata’s close connection to Wikimedia volunteer communities and          

wide readership provided by Wikipedia have quickly given it a competitive edge. The system,              

therefore, aims to combine the wisdom of the crowds with advanced algorithms. For             

instance, Wikidata editors are assisted by a property suggesting system, proposing additional            

properties to be added to entries (Zangerle, Gassler, Pichl, Steinhauser, & Specht, 2016).             

Wikidata has subsequently exhibited the highest growth rate of any Wikimedia project and             

was the first amongst them to pass one billion contributions (Waagmeester, et al., 2020b). 

As a collaborative venture, its governance model is similar to Wikipedia (Lanamäki &             

Lindman, 2018), but with some important differences. Wide permissions to edit Wikidata are             

manually granted to approved bots and to Wikimedia accounts that are at least 4 days old                

and have made at least 50 edits using manual modifications or semi-automated tools for              

editing Wikidata . These accounts are supervised by a limited number of experienced            9

administrators to prevent misleading editing behaviors (such as vandalism, harassment, and           

abuse) and to ensure a sustainable consistency of the information provided by Wikidata . As              10

such, Wikidata is highly relevant to the computer-supported collaborative work (CSCW) field,            

yet the number of studies of Wikidata from this perspective is still very limited (Sarasua, et                

al., 2019). To understand the value of using SPARQL to validate the usage of relation types in                 

collaborative ontologies and knowledge graphs, it is important to understand the main            

distinctive features of Wikidata as a collaborative project. 

Much as Wikidata is developed collaboratively by international editors, it is also            

designed to be language-neutral. As a result, it is quite possible to contribute to Wikidata               

with only a limited command of English and to effectively collaborate whilst sharing no              

common human language - an aspect unique even in the already rich ecosystem of              

collaborative projects (Jemielniak & Przegalinska, 2020). It may well be an early sign of other               

language-independent cooperative knowledge creation initiatives, such as Wikilambda,        

which is an abstract Wikipedia currently developed on the basis of Wikidata (Vrandečić,             

2020). 

9 For an overview of the semi-automated editing tools for Wikidata, please see 
https://www.wikidata.org/wiki/Wikidata:Tools 
10 Further information about the rights and governance of users in Wikidata is shown at 
https://www.wikidata.org/wiki/Wikidata:User_access_levels 

 



It is also possible to build Wikipedia articles, especially in underrepresented           

languages, based on Wikidata data only, and create article placeholders to stimulate            

encyclopedia articles’ growth (Kaffee et al., 2018). This stems from combining concepts that             

are relatively easily intertranslatable between languages (e.g. professions, causes of death,           

capitals) with language-agnostic data (e.g. numbers, geographical coordinates, dates). As a           

result, Wikidata is a paragon example of not only cross-cultural cooperation but also             

human-bot collaborative efforts (Piscopo, 2018; Farda-Sarbas, et al., 2019). Given the           

large-scale crowdsourcing efforts in Wikidata and the use of bots and semi-automated tools             

to mass edit Wikidata, its current volume is higher than what can be reviewed and curated                

by administrators manually. It is quite intuitive: as the general number of edits created by               

bots grows, so grows the number of administrative tasks to be automated. Automation may              

include simplifying alerts, fully and semi-automated reverts, better user tracking, or           

automated corrections. However, the creation of automated methods for the verification           

and validation of the ontological relations it contains is required most. 

3. Knowledge graph validation of Wikidata 
As Wikidata properties are assigned labels, descriptions and aliases in multiple           

languages (Red in Fig. 6), multilingual information of these properties can be used alongside              

the labels, descriptions, and aliases of Wikidata items to verify and find sentences supporting              

biomedical statements in scholarly outputs (Zhang, et al., 2019). Such a process can be based               

on various natural language processing techniques, including word embeddings (Zhang, et           

al., 2019; Chen, et. al., 2020) and semantic similarity (Ben Aouicha & Hadj Taieb, 2016).               

These techniques are robust enough to achieve an interesting level of accuracy, and some of               

them can achieve better accuracy when the Wikidata classes of the subject and object of               

semantic relations are given as inputs (Lastra-Díaz, et al., 2019; Hadj Taieb, Zesch, & Ben               

Aouicha, 2020). 

The subjects and objects of Wikidata relations can likewise be aligned to other             

biomedical semantic resources such as MeSH and UMLS Metathesaurus (Turki, et al., 2019).             

Thus, benchmarks for relation extraction based on one of the major biomedical ontologies             

can be converted into a Wikidata friendly format and used to automatically enrich Wikidata              

with novel biomedical relations or to automatically find statements supporting existing           

biomedical Wikidata relations (Zhang, et al., 2018). Furthermore, MeSH keywords of           

scholarly publications can be converted into their Wikidata equivalents, refined using           

citation and co-citation analysis (Turki, 2018), and used to verify and add biomedical             

Wikidata relations, e.g. by applying deep learning-based bibliometric-enhanced information         

retrieval techniques (Mayr, Scharnhorst, Larsen, Schaer, & Mutschke, 2014; Turki, Hadj           

Taieb, & Ben Aouicha, 2018). 

Another option of validating biomedical statements based on the labels of their            

subjects, predicates, and objects in Wikidata can be the use of these labels for the               

reformulation of a query to search bibliographic databases and consequently to find            

appropriate references for the assessed Wikidata statements (Example in Fig. 5). Several            

bots and bot frameworks have been successfully built using this principle such as Wikidata              

 



Integrator that extracts the Wikidata statements of a given gene or protein using SPARQL,              11

compare them with their equivalents in other structured databases like NCBI's Gene            

resources and Uniprot and adjust them if needed, and RefB (Fig. 1) that extracts biomedical               12

Wikidata statements not supported by references using SPARQL and identifies the sentences            

supporting them in scholarly publications using PubMed Central search engine and a variety             

of techniques such as concept proximity analysis. 

 

Figure 1: Process of RefB, a bot that adds scholarly references to biomedical Wikidata statements based on PubMed                  
Central [Source: https://w.wiki/an$, License: CC BY 4.0]. The source code of RefB is available at               
https://github.com/Data-Engineering-and-Semantics/refb/ 

In addition to their multilingual set of labels and descriptions, Wikidata properties are             

assigned object types using wikibase:propertyType relations (Blue in Fig. 2). These relations            

allow the assignment of appropriate objects to statements, so that non-relational           

statements cannot have a Wikidata item as an object, while objects of relational statements              

are not allowed to have data types like a value or a URL (Vrandečić & Krötzsch, 2014). 

11 Wikidata Integrator is a bot framework for automatically curating genetic information provided by Wikidata 
(https://github.com/SuLab/WikidataIntegrator). For Wikidata bots using this frameworks, refer to 
https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki#Bot_accounts. 
12 https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/RefB_(WikiCred) 
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Figure 2: Wikidata page of a clinical property [Source: https://w.wiki/aeF, Derived from: https://w.wiki/aeG, License: CC               

BY-SA 4.0]. It includes the labels, descriptions and aliases of the property in multiple languages (Red), the object data type                    

(Blue), statements where the property is the subject (Green) as well as property constraints (Brown). 

Just like a Wikidata item, a property can be described by statements (Green in Fig. 2).                

These statements can link the respective property to their class (using instance of [P31] as a                

predicate), to their corresponding Wikidata item (using subject item of this property [P1629]             

as a predicate), to an example of the usage of this property (using Wikidata property               

 



example [P1855] as a predicate), to its equivalents in other IRIs (using equivalent property              13

[P1628] as a predicate), to the Wikimedia category that tracks its usage on a given wiki                

(using property usage tracking category [P2875] as a predicate), to its inverse property             

(using inverse property [P1696] as a predicate), or to its proposal discussion (using property              

proposal discussion [P3254] as a predicate), etc.  

These statements can be interesting for various knowledge graph validation          

purposes. In fact, the class, the usage examples and the proposal discussion of a Wikidata               

property can be useful through the use of several natural language processing techniques,             

particularly semantic similarity, to provide several features of the use of the property such as               

its domain of application (e.g. the subject or object of a statement using a Wikidata property                

related to medicine should be a medical item) and consequently to eliminate some of              

erroneous use by screening the property usage tracking category. The class of the Wikidata              

item corresponding to the property can be used to identify the field of work of the property                 

and thus flag some inappropriate applications. In addition, the external identifiers of such an              

item can be used for the verification of biomedical relations by their identification within the               

semantic annotations of scholarly publications built using the SAT+R (Subject, Action, Target,            

and Relations) model (Piad-Morffis, Gutiérrez, & Muñoz, 2019). The inverse property           

relations can identify missing Wikidata statements (C1, P , C 2), which are implied by the              

presence of inverse statements (C2, P -1, C 1) in other Wikidata resources. Here, P-1 is the               

Wikidata property that is the inverse of P, CS is a common class of the subjects of P , and C O is                     

a common class of the objects of P. 

Despite the importance of these statements defining properties, property constraint          

[P2302] relations (Brown in Fig. 2) are the semantic relations that are primarily used for the                

validation of the usage of a property. In essence, they define a set of conditions for the use                  

of a property, including several heuristics for the type and format of the subject or the                

object, information about the characteristics of the property, and several description logics            

for the usage of the property as shown in Table 1. Property constraints are either manually                

added by Wikidata users or inferred with an excellent accuracy from the knowledge graph of               

Wikidata or the history of human changes to Wikidata statements (Pellissier Tanon,            

Bourgaux, & Suchanek, 2019; Hanika, et al., 2019). 

Table 1: Constraint types for the usage of Wikidata properties 

Wikidata ID Constraint type Description 
Q19474404 single value constraint Constraint used to specify that this property generally contains a 

single value per item 
Q21502404 format constraint Constraint used to specify that the value for this property has to 

correspond to a given pattern 
Q21502408 mandatory constraint status of a Wikidata property constraint: indicates that the 

specified constraint applies to the subject property without 
exception and must not be violated 

Q21502410 distinct values constraint Constraint used to specify that the value for this property is likely 
to be different from all other items 

Q21510852 Commons link constraint Constraint used to specify that the value must link to an existing 
Wikimedia Commons page 

13 Internationalized Resource Identifier (IRI) is a standardized character string (e.g. a URL) that recognizes a 
given item in a semantic resource 

 



Q21510854 difference within range 
constraint 

Constraint used to specify that the value of a given statement 
should only differ in the given way. Use with qualifiers minimum 
quantity/maximum quantity 

Q21510856 mandatory qualifier constraint Constraint used to specify that the listed qualifier has to be used 
Q21510862 symmetric constraint Constraint used to specify that the referenced entity should also 

link back to this entity 
Q21510863 used as qualifier constraint Constraint used to specify that a property must only be used as a 

qualifier 
Q21510864 value requires statement 

constraint 
Constraint used to specify that the referenced item should have a 
statement with a given property 

Q21510495 relation of type constraint relation establishing dependency between types/metalevels of its 
members 

Q21510851 allowed qualifiers constraint Constraint used to specify that only the listed qualifiers should be 
used. Novalue disallows any qualifier 

Q21510865 value type constraint Constraint used to specify that the referenced item should be a 
subclass or instance of a given type 

Q21514353 allowed units constraint Constraint used to specify that only listed units may be used 
Q21510857 multi-value constraint Constraint used to specify that a property generally contains more

than one value per item 
Q21510859 one-of constraint Constraint used to specify that the value for this property has to 

be one of a given set of items 
Q21510860 range constraint Constraint used to specify that the value must be between two 

given values 
Q21528958 used for values only constraint Constraint used to specify that a property can only be used as a 

property for values, not as a qualifier or reference 
Q21528959 used as reference constraint Constraint used to specify that a property must only be used in 

references or instances of citation (Q1713) 
Q25796498 contemporary constraint Constraint used to specify that the subject and the object have to 

coincide or coexist at some point of history 
Q21502838 conflicts-with constraint Constraint used to specify that an item must not have a given 

statement 
Q21503247 item requires statement 

constraint 
Constraint used to specify that an item with this statement should 
also have another given property 

Q21503250 type constraint Constraint used to specify that the item described by such 
properties should be a subclass or instance of a given type 

Q54554025 citation needed constraint Constraint specifies that a property must have at least one 
reference 

Q62026391 suggestion constraint status of a Wikidata property constraint: indicates that the 
specified constraint merely suggests additional improvements, 
and violations are not as severe as for regular or mandatory 
constraints 

Q64006792 lexeme value requires lexical 
category constraint 

Constraint used to specify that the referenced lexeme should 
have a given lexical category 

Q42750658 value constraint class of constraints on the value of a statement with a given 
property. For constraint: use specific items (e.g. "value type 
constraint", "value requires statement constraint", "format 
constraint", etc.) 

Q51723761 no bounds constraint Constraint specifies that a property must only have values that do 
not have bounds 

Q52004125 allowed entity types constraintConstraint used to specify that only listed entity types are valid for
this property 

Q52060874 single best value constraint Constraint used to specify that this property generally contains a 
single “best” value per item, though other values may be included 
as long as the “best” value is marked with preferred rank 

Q52558054 none of constraint Constraint specifying values that should not be used for the given 
property 

 



Q52712340 one-of qualifier value property 
constraint 

Constraint used to specify which values can be used for a given 
qualifier when used on a specific property 

Q52848401 integer constraint Constraint used when values have to be integer only 
Q53869507 property scope constraint Constraint to define the scope of the property (main value, 

qualifier, references, or combination); only supported by KrBot 
currently 

As shown in Fig. 2, a property constraint is defined as a relation where the property                

type is featured as an object and the detailed conditions of the constraint to be applied on                 

Wikidata statements are integrated as qualifiers to the relation. When a property constraint             

is violated, the corresponding statement is automatically included in a report of property             

constraint violations and is marked by an exclamation mark on the page of the subject item                14

(Fig. 3) so that it can be quickly processed and adjusted by the community or by Wikidata                 

bots if applicable. 

 

Figure 3: Example of a property constraint violation marked in the page of a Wikidata item, Q3603152 (flash blindness) 

[Available on Wikimedia Commons: https://w.wiki/ZuJ, license: CC0] 

Although these methods are important to verify and validate Wikidata, they are not the only               

ones that are used for these purposes. In 2019, Wikidata announced the adoption of Shape               

Expressions language (ShEx) as part of the Mediawiki entity schemas extension . ShEx was             15

proposed following an RDF validation workshop that was organized by W3C in 2014 as a               16

concise, high-level language to describe and validate RDF data (Prud'hommeaux, Labra Gayo,            

& Solbrig, 2014). This Mediawiki extension uses ShEx to store structure definitions            

(EntitySchemas or Shapes) for sets of Wikidata entities which are selected by some query              

pattern (frequently the involvement of said entities in a Wikidata class). This provides             

collaborative quality control where the community can iteratively develop a schema and            

refine the data to conform to that schema. For those familiar with XML, ShEx is analogous to                 

XML Schema or RelaxNG. SHACL (Shapes Constraint Language), another language used to            

constraint RDF data models, uses a flat list of constraints, analogous to XML’s Schematron. It               

was adapted from SPIN (SPARQL Inference Notation) by the W3C Data Shapes working group              

in 2014 and became a W3C recommendation in 2017 (Knublauch & Kontokostas, 2017).             

However, ShEx has was chosen to represent EntitySchemas in Wikidata, as it has a compact               

syntax which makes it more human-friendly, supports recursion, and is designed to support             

distributed networks of reusable schemas (Labra Gayo, Prud'hommeaux, Boneva, &          

14 https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations 
15 https://www.mediawiki.org/wiki/Extension:EntitySchema 
16 https://www.w3.org/2012/12/rdf-val/report 
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Kontokostas, 2017). Besides the possibility to infer ShEx expressions from the screening of a              

large set of concerned items, they can be easily written by humans in an intuitive way. 

In Wikidata, ShEx-based EntitySchemas are assigned an identifier (a number          

beginning with an E) as well as labels, descriptions, and aliases in multiple languages, so that                

they can be easily identified by users. Entity schemas are defined using the ShEx-compact              

syntax , which is a concise,human-readable syntax. A schema usually begins by some prefix             17

declarations similar to SPARQL. An optional start definition declares the shape which will be              

used by default. In the example (Fig. 4), the shape <app> will be used, and its declaration                 

contains a list of properties, possible values, and cardinalities. By default, shapes are open,              

which means that other properties apart from the ones declared are allowed. In this              

example, the values of property wdt:P31 are declared to be either a COVID-19 dashboard              

(wd:Q90790055), a search engine (wd:Q91136116) or a dataset (wd:Q91137337).         

The EXTRA directive indicates that there can be additional values for property wdt:P31 that              

differ from the specified ones. The value for property wdt:P1476 is declared to be zero or                

more literals. The cardinality indicators come from regular expressions, where ‘?’ means zero             

or one, ‘*’; means zero or more, and ‘+’ means one or more. While the values for the other                   

properties are declared to be anything (the dot indicates no constraint) zero or more times,               

except for the properties wdt:P577 and wdt:P7103 that are marked as optional using the              

question mark. Further documentation about ShEx can be found at http://shex.io/ and in             

Labra Gayo et al. (2017). 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX wdt: <http://www.wikidata.org/prop/direct/> 
PREFIX wd: <http://www.wikidata.org/entity/> 
 
start = @<app> 
 
<app>  EXTRA wdt:P31  { 
  wdt:P31   [ wd:Q90790055 # instance of COVID-19 dashboard or 
              wd:Q91136116 # search engine or 
              wd:Q91137337 # dataset 
            ] ;  
  wdt:P1476 LITERAL * ; #title 
  wdt:P366  .       * ; #use 
  wdt:P123  .       * ; #publisher 
  wdt:P178  .       * ; #developers 
  wdt:P495  .       * ; #country of origin 
  wdt:P306  .       * ; #operating system 
  wdt:P856  .       * ; #official website 
  wdt:P921  .       * ; #main subject 
  wdt:P144  .       * ; #based on 
  wdt:P577  .       ? ; #publication date 
  wdt:P7103 .       ? ; #start of covered period 
  wdt:P275 .        * ; #copyright license 
  wdt:P5008 .       * ; #on focus list of Wikimedia project 
} 

17 ShEx schemas can also be defined in RDF-based representations like Turtle or JSON-LD. 
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Figure 4: EntitySchema for COVID-19 dashboards, search engines and datasets [Source: 

https://www.wikidata.org/wiki/EntitySchema:E205] 

Due to the ease of using ShEx to define EntitySchemas, it has been used successfully               

to validate Danish lexemes in Wikidata (Nielsen, Thornton, & Labra-Gayo, 2019) and            

biomedical Wikidata statements (Thornton, et al., 2019). During the COVID-19 pandemic,           

Wikidata’s data model of every COVID-19-related class as well as of all major biomedical              

classes has been converted to an EntitySchema, so that it can be used to validate the                

representation of COVID-19 Wikidata statements (Waagmeester, et al., 2020a). These          

EntitySchemas were successfully used to enhance the development and the robustness of            

the semantic structure of the data model underlying the COVID-19 knowledge graph in             

Wikidata and are accordingly made available at a subpage of Wikidata’s WikiProject            

COVID-19, accessible via   

https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Data_models. 

4. SPARQL as a semantic query language 
Like ShEx, SPARQL is a human-friendly language based on defining triples as            18

conditions (Pérez, Arenas, & Gutierrez, 2009). Just like ShEx, SPARQL defines prefixes to             

abbreviate IRIs (Blue in Fig. 4). It also uses the skeleton of SQL to define queries to                 

knowledge graphs in RDF format (Kumar, Kumar & Kumar, 2011). Quite similarly to SQL,              

SPARQL uses SELECT clauses to define the variables to show, SELECT DISTINCT clauses to              

define variables and prevent repeated results, FROM clauses to define the source database             

of the defined query, WITH clauses to define a subquery, WHERE clauses to state conditions               

in the form of triples, LIMIT clauses to restrict the number of returned results to a given                 

value, OFFSET clauses to skip a number of first results, HAVING clauses to define logical               

conditions for filtering the variables based on aggregate functions, GROUP BY clauses to             

group entries to compute an aggregate function, ORDER BY clauses to sort the results              

according to a given variable (Kumar, Kumar, & Kumar, 2011; Bonifati, Martens, & Timm,              

2017). Most of the aggregate functions used to compute new variables based on the ones               

retrieved by the query from the source database exist in both languages, as shown in Table 2                 

(Bonifati, Martens, & Timm, 2017; DuCharme, 2013). In SQL as well as SPARQL language,              

new aggregate function-based variables are defined in the SELECT clause using the            

(function(variable) AS new_variable) format, and constant values and strings are put           

between quotation marks. 

Table 2: List of aggregate functions available in SQL and SPARQL (Bonifati, Martens, & Timm, 2017; DuCharme, 2013) 

Function Description 
AVG Average of non-NULL values in a set. 
COUNT Number of results in a group, including the ones with NULL values 
MAX Maximum in a set of non-NULL values 
MIN Minimum in a set of non-NULL values 
STDEV Standard deviation of all values provided in the expression based on a limit set of results 
STDEVP Standard deviation for all values in the provided expression based on all the returned results 
SUM Sum of all non-NULL values in a set 

18 An open license SPARQL textbook available in multiple languages can be found at 
https://en.wikibooks.org/wiki/SPARQL. 
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VAR Statistical variance of values in an expression based on a limit set of results 
VARP Statistical variance of values in an expression based on all the returned results 

Furthermore, both SQL and SPARQL define logical conditions in the HAVING clause            

for variables based on aggregate functions or in the WHERE clause for variables to be               

retrieved from the source database as FILTER (condition) (Bonifati, Martens, & Timm, 2017;             

DuCharme, 2013). The declaration of the logical conditions also uses the same operators             

(AND [also &&], || [OR], and NOT [also !]), values (True, False, and Null), logical functions                

(EXISTS [verifies the existence of a condition or a statement], NOT EXISTS [the opposite of               

EXISTS], and MINUS [eliminate the set of values having a given characteristic from the              

results]), and mathematical operators (> [superior to], < [inferior to], = [equal to], >=              

[superior or equal to], <= [inferior or equal to], != [different from], + [plus], - [minus], *                 

[times], and / [divide]) (DuCharme, 2013).  

In contrast to SQL, the variables in SPARQL are preceded by an interrogation mark              

and are not separated by a comma in the SELECT clause (DuCharme, 2013; Harris, Seaborne,               

& Prud’hommeaux, 2013), and even the declaration of statements in the WHERE clause             

using SPARQL is different from the one using SQL. In the latter, the declaration of the                

statements in a WHERE clause can only be done in a single line (Kumar, Kumar & Kumar,                 

2011). When multiple statement conditions should be fulfilled, they have to be linked using              

the INTERSECT operator (Hsu & Parker, 1995). When a unique condition from a list of               

statements should be respected, the list’s statements should be linked using the UNION             

operator (Hsu & Parker, 1995). Where results fulfilling a given condition should be             

eliminated, the condition must be preceded by the MINUS operator (Hsu & Parker, 1995). In               

SPARQL, the WHERE clause can include multiple lines between curly brackets, where each             

line is in the form of a subject-predicate-object triple (Kumar, Kumar, & Kumar, 2011). When               

the statements between brackets are in the form of a triple, they should end with a period.                 

When two successive statements have the same subject, the first statement can end with a               

semicolon. In this particular situation, the subject of the second statement can be omitted              

(DuCharme, 2013; Harris, Seaborne, & Prud’hommeaux, 2013). An exception to this is the             

FILTER() function allowing the definition of a logical condition to be considered or the BIND()               

function allowing the creation of a new variable based on the retrieved characteristic of a               

single result row (DuCharme, 2013; Harris, Seaborne, & Prud’hommeaux, 2013). Although           

the MINUS and UNION operators can be used as in SQL, the INTERSECT operator is useless                

and is forsaken in SPARQL and the MINUS and UNION operators should be preceded and               

followed by statements between curly brackets like the WHERE clause (DuCharme, 2013;            

Harris, Seaborne, & Prud’hommeaux, 2013). SPARQL has also the advantage to allow            

including entries where a set of statements in the WHERE clause is not respected by putting                

these statements after the OPTIONAL operator between curly brackets (DuCharme, 2013;           

Harris, Seaborne, & Prud’hommeaux, 2013). 

In Wikidata, the Wikidata Query Service (https://www.wikidata.org) allows to query          

the knowledge graph using SPARQL (Malyshev, et al., 2018; Turki, et al., 2019). The required               

Wikidata prefixes are already supported in the backend of the service and do not need to be                 

defined (Malyshev, et al., 2018). What the user needs to do is to formulate their SPARQL                

query (Black in Fig. 5) and click on the Run button (Blue in Fig. 5). After a compilation period,                   

 



the results will appear (Green in Fig. 5) and can be downloaded in different formats (Brown                

in Fig. 5), including JSON, TSV, CSV, HTML, and SVG. Different modes for the visualization of                

the query results can be chosen (Purple in Fig. 5), particularly table, charts (line, scatter,               

area, bubble), image grid, map, tree, timeline, and graph. The query service also allows users               

to use a query helper (Red in Fig. 5) that can generate basic SPARQL queries and get inspired                  

by sample queries (Yellow in Fig. 5), especially when they lack experience. It also allows us to                 

generate a short link for the query (Pink in Fig. 5) and codes to embed the query results in                   

web pages and computer programs (Brown in Fig. 5) (Malyshev, et al., 2018).  

 

Figure 5: Web interface of Wikidata Query Service [Source: https://w.wiki/aeH, Derived from:            

https://query.wikidata.org, License: CC BY-SA 4.0]. It involves a query field (Black), a query builder (Red), a short link                  

button (Pink), a Run button (Blue), a visualization mode button (Purple), a download button (Brown), an embedding code                  

generation button (Grey), a results field (green), and a sample query button (Yellow) 

The statements in the WHERE clause should be defined such that known subjects and              

objects are preceded by wd prefix whatever they are Wikidata items or properties and that               

 



the predicate should be a Wikidata property and it is preceded by wdt prefix as clearly                

shown in Fig. 6. Other Wikidata prefixes can be used to parse Wikidata qualifiers (pq and                

pqv) and references (pr and prv) or to link between a Wikidata statement to one of its                 

components (p, prov, ps, and psv). The wikibase prefix can be used to return the               

characteristics of an item, a property or a statement. For example, wikibase:directClaim and             

wikibase:Claim can shift a property from a Wikidata prefix to another one (e.g. shifting              

Wikidata properties from wdt to wd), and wikibase:rank can be useful to return the level of                

importance assigned by the community to a statement. 

 

Figure 6: RDF data structure of Wikidata knowledge graph [Available at: https://w.wiki/any, adapted from source:               

https://w.wiki/ZUA, Michael F. Schönitzer, CC-BY 4.0] 

5. Constraint-driven inference of biomedical property constraints 
As described above, Wikidata properties are assigned property constraints and          

statements as logical conditions for the use of the types of triples to represent knowledge in                

Wikidata (Fig. 2). Screening Wikidata items in a class to identify common features of the               

assessed entities based on a set of formal rules has been previously proposed (Marx &               

Krötzsch, 2017; Hanika et al. 2019). These features involve common characteristics of the             

data model of the concerned class as well as patterns of used Wikidata properties such as                

symmetry and are later used to verify the completeness of the class and validate the               

statements related to the evaluated class using SPARQL queries. In this work, we propose a               

similar protocol fully based on logical constraints fully implementable using SPARQL queries            

to infer constraints for the assessment of the usage of relation types (P) on Wikidata based                

on the most frequently used corresponding inverse statements (CO, P -1, CS). These constraints             

can be later used to define COVID-19-related Wikidata statements and to generate ShEx             

schemas for COVID-19-related Wikidata classes. Fig. 7 represents the scheme of the given             

relation type that will be used to assess and validate the use of Wikidata properties.  

 



 

Figure 7: Scheme of a given Wikidata property [Source: https://w.wiki/anw, License: CC BY 4.0]: S and O are respectively                   
the subject and the object of the statement, P is the predicate of the statement, P-1 is the inverse property of P, CS is the                         
class of the subject, and CO is the class of the object. 

Once retrieved, the common inverse property statements (CO, P -1, CS) of the given             

Wikidata property P will be used to identify relations that use P in an uncommon and                

probably wrong way, to identify missing inverse relations of P(S,O) corresponding to the             

most used (CO, P -1, CS) scheme, and to identify the Wikidata items missing statements using P                

as shown in Table 3. The assessment of the usage of the given Wikidata property will not be                  

restricted to these tasks, as it also involves the identification of relations using P not               

supported by references and the identification of Wikidata properties used to define            

references for relations using P. 
Table 3: Tasks for quality assessment of the usage of Wikidata relation types using the Wikidata SPARQL endpoint 

Task Description 
Defining the scheme of a Wikidata property 
T1 Identify common use cases  of P: (CS,CO) pairs 
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T2 Identify inverse properties of P corresponding to each common use case: (CS, R
-1,CO) 

statements 
Identifying the deficiencies of the scheme 
T3 For each returned P-1, identify P(S,O) relations supported by references and corresponding to 

the most common (CS, P
-1, CO) statement but not available in Wikidata 

T4 Identify P(S,O) relations not corresponding to the most common scheme of P 
Assessing the reference support of relations using the studied Wikidata property 
T5 Identify Wikidata properties used to define references for relations using P 

 

This task set is useful to assess and adjust the reference support, the language              

support, the quantity, and the quality of the relations using P and P-1 at a given point in time                   

and can be easily completed using the Wikidata Query Service. The SPARQL query of each               

task is given in Appendix A, where <PropertyID> is the Wikidata ID of the studied property P,                 

19 Use case: A set of conditions for the use of a relation type P. 

 



<SubjectID> is the Wikidata ID of the subject class CS that is most used with this property,                 

and <ObjectID> is the Wikidata ID of the most used object class CO. 

For Tasks T1 and T2, we eliminated property use cases where classes CS and C O are                

first-order metaclasses (Q24017414), so that we do not get nonspecific use cases.            

Additionally, we only considered use cases applied to more than a defined usage threshold              

(here set as 100 but can change according to context) in order to omit statements that are                 

not widely used in Wikidata. For Task T4, we used logical constraints to find statements               

where the subject is not an instance of the most used subject class CS (G1), then to find                  

statements where the object is not an instance of the most used object class CO (G2). After                 

that, we identified the statements that exist in both G1 and G2 as the most likely wrong                 

statements (G1 ∩ G2) as they correspond neither to the most used subject class nor to the                 

most used object class of the studied property. For Task T5, Wikidata properties used to               

define fewer than a threshold number of references using P were not considered (again,              

here set to 100). Our analysis was performed on September 20, 2019, following the Zika               

outbreak as a proactive action to build the data model infrastructure to support clinical              

information about future infectious epidemics in Wikidata (the date is relevant due to the              

rapidly expanding nature of the database). 

To assess the effectiveness of the use of logical constraints to generate condition for              

the verification and validation of the use of relation types to enrich the Wikidata ontology,               

we applied our method to the main six Wikidata properties that can be used to represent                

COVID-19-related knowledge: drug used for treatment [P2176], route of administration          

[P636], therapeutic area [P4044], significant drug interaction [P7696], medical condition          

treated [P2175], and symptoms [P780]. Further details about these properties can be found             

in Table 4.  

Table 4: Wikidata properties assessed in this study 

Property  Description  Statements 
Drug used for 
treatment (P2176) 

drug, procedure, or therapy that can be used to treat a medical 
condition 

6344 

Significant drug 
interaction (P769) 

clinically significant interaction between two pharmacologically 
active substances (i.e., drugs and/or active metabolites) where 
concomitant intake can lead to altered effectiveness or adverse 
drug events. 

1850 

Medical condition 
treated (P2175) 

disease that this pharmaceutical drug, procedure, or therapy is 
used to treat 

6499 

Symptoms (P780)  possible symptoms of a medical condition  8068 
Route of 
administration 
(P636) 

path by which a drug, fluid, poison, or other substance is taken 
into the body 

2900 

Therapeutic area 
(P4044) 

disease area in which a medical intervention is applied 1320 

 
Task T1 was effective at sorting the common use cases of the studied Wikidata              

properties as shown in Table 5. All the retrieved use cases were proven to be logically                

accurate when compared to the descriptions of Wikidata properties available in Table 4. The              

most common use cases for drugs used for treatment [P2176], therapeutic area [P4044],             

significant drug interactions [P769], or medical condition treated [P780] corresponded to 72            

percent or more of the supported statements. However, there was a significant lack of              

 



availability of common use cases for route of administration [P636] and symptoms [P780],             

and this can be explained by a deficiency of logical reasoning by users when using these                

properties due to human faults, to inexperience with Wikidata or to inconsistencies between             

languages, which often derive from slight differences in the naming and framing of             

Wikipedia articles in a given set of languages. This can be also explained by a current                

deficiency in Wikidata taxonomy in attributing Wikidata items to corresponding classes. 

Table 5: Common use cases of the studied Wikidata properties 

Wikidata ID  Property  Subject Class  Object Class  Number of 
Statements 

P2176  Drug used for 
treatment 

Disease (Q12136)  medication (Q12140)  4777 
Disease (Q12136)  essential medicine 

(Q35456) 
1558 

Infectious disease 
(Q18123741) 

medication (Q12140)  558 

Disease (Q12136)  Heterocyclic 
compound (Q193430) 

484 

Disease (Q12136)  Biopharmaceutical 
(Q679692) 

471 

P636  Route of 
administration 

medication (Q12140)  route of administration 
(Q621636) 

179 

P4044  Therapeutic 
area 

Pharmaceutical product 
(Q28885102) 

disease (Q12136)  1147 

mixture (Q169336)  disease (Q12136)  1142 
Pharmaceutical product 
(Q28885102) 

rare disease (Q929833)  142 

mixture (Q169336)  rare disease (Q929833)  141 
Pharmaceutical product 
(Q28885102) 

Designated 
intractable/rare 
diseases (Q42303753) 

115 

P769  Significant 
drug 
interaction 

medication (Q12140)  medication (Q12140)  1729 
medication (Q12140)  essential medicine 

(Q35456) 
524 

essential medicine 
(Q35456) 

medication (Q12140)  507 

medication (Q12140)  Heterocyclic 
compound (Q193430) 

342 

Heterocyclic compound 
(Q193430) 

medication (Q12140)  338 

P2175  Medical 
condition 
treated 

medication (Q12140)  Disease (Q12136)  4729 
essential medicine 
(Q35456) 

Disease (Q12136)  1520 

medication (Q12140)  Infectious disease 
(Q18123741) 

557 

Heterocyclic compound 
(Q193430) 

Disease (Q12136)  487 

Biopharmaceutical 
(Q679692) 

Disease (Q12136)  449 

P780  Symptoms  disease (Q12136)  symptom (Q169872)  338 
disease (Q12136)  disease (Q12136)  264 

 

Task T2 successfully sorted the inverse properties of Wikidata relation types for each             

corresponding use case as shown in Table 6. Here, we found that three relations had clear                

inverse properties: medical condition treated [P2175], significant drug interaction [P769] and           

drug used for treatment [P2176] are the inverse properties, respectively, for drug used for              

treatment [P2176], significant drug interaction [P769] and medical condition treated          

[P2175]. Hence, P2175 and P2176 are inverse to each other, and P769 is inverse to itself.                

However, we did not find any common inverse properties for route of administration [P636],              

 



therapeutic area [P4044] or symptoms [P780]. Consequently, the Task T2 can be used not              

only to find inverse properties of Wikidata relation types but also to identify Wikidata              

relation types where inverse properties do not exist or are not used as intended. In such a                 

situation, the user should manually search for any inverse property to verify whether it exists               

or propose to the Wikidata community to create it as a new property if it does not exist                  
20

(Turki, et al., 2019). 

Table 6: Inverse properties corresponding to each common use case of the studied Wikidata relation types 

Wikidata 
ID 

Property  Inverse 
property 

Use case  Number of 
Statements Subject Class  Object Class 

P2176  Drug used for 
treatment 

medical condition 
treated (P2175) 

Disease (Q12136)  Medication 
(Q12140) 

4576 

medical condition 
treated (P2175) 

Disease (Q12136)  essential 
medicine 
(Q35456) 

1482 

medical condition 
treated (P2175) 

Infectious disease 
(Q18123741) 

Medication 
(Q12140) 

549 

medical condition 
treated (P2175) 

Disease (Q12136)  Heterocyclic 
compound 
(Q193430) 

477 

medical condition 
treated (P2175) 

Disease (Q12136)  Biopharmaceutica
l (Q679692) 

442 

P636  Route of 
administration 

NA 

P4044  Therapeutic 
area 

NA 

P769  Significant 
drug 
interaction 

Significant drug 
interaction (P769) 

Medication 
(Q12140) 

Medication 
(Q12140) 

1330 

Significant drug 
interaction (P769) 

Medication 
(Q12140) 

essential 
medicine 
(Q35456) 

359 

Significant drug 
interaction (P769) 

essential medicine 
(Q35456) 

Medication 
(Q12140) 

359 

Significant drug 
interaction (P769) 

Heterocyclic 
compound 
(Q193430) 

Medication 
(Q12140) 

288 

Significant drug 
interaction (P769) 

Medication 
(Q12140) 

Heterocyclic 
compound 
(Q193430) 

288 

P2175  Medical 
condition 
treated 

Drug used for 
treatment (P2176) 

Medication 
(Q12140) 

Disease (Q12136)  4576 

Drug used for 
treatment (P2176) 

essential medicine 
(Q35456) 

Disease (Q12136)  1482 

Drug used for 
treatment (P2176) 

Medication 
(Q12140) 

Infectious disease 
(Q18123741) 

549 

Drug used for 
treatment (P2176) 

Heterocyclic 
compound 
(Q193430) 

Disease (Q12136)  477 

Drug used for 
treatment (P2176) 

Biopharmaceutical 
(Q679692) 

Disease (Q12136)  442 

P780  Symptoms  NA 

 

Task T3 effectively extracted those statements that use drug used for treatment            

[P2176], significant drug interaction [P769] and medical condition treated [P2175] as a            

Wikidata relation type where related inverse relations do not exist in Wikidata as clearly              

stated in Table 7. Only relations corresponding to the most common use case of the related                

20e.g. Risk factor property proposal: https://www.wikidata.org/wiki/Wikidata:Property_proposal/risk_factor 
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Wikidata property and supported by references are considered. For the studied Wikidata            

relation types, 688 missing inverse statements were identified. These statements can be            

directly added to Wikidata using tools for the automatic enrichment of Wikidata, particularly             

QuickStatements (Turki, et al., 2019), as they are supported by external references and are              

already stated in a Wikidata-friendly format. 

Table 7: Number of missing inverse statements of Wikidata relations supported by references and corresponding to the 
most used scheme of each Wikidata property 

Wikidata 
ID 

Property  Most used scheme  Missing 
inverse 
statements 

Inverse 
property 

Subject Class  Object Class 

P2176  Drug used for 
treatment 

medical condition 
treated (P2175) 
 

Disease (Q12136) 
 

Medication 
(Q11173) 

160 

P636  Route of 
administration 

NA 

P4044  Therapeutic area  NA 

P769  Significant drug 
interaction 

Significant drug 
interaction (P769) 

Medication 
(Q12140) 

Medication 
(Q12140) 

385 

P2175  Medical 
condition treated 

Drug used for 
treatment (P2176) 

Medication 
(Q12140) 

Disease (Q12136)  143 

P780  Symptoms  NA 

 

Task T4 efficiently identified the statements not corresponding to the most common            

use case of the related Wikidata property as shown in Table 8. In fact, 11236 statements not                 

corresponding to the most used subject class of the studied Wikidata properties and 7354              

statements not corresponding to the most used object class of the studied Wikidata             

properties were identified. 

Table 8: Number of statements not corresponding to the most common use case of each Wikidata property: Statements 
where the subject class is not the most used one (G1), statements where the object class is not the most used one (G2) 

Wikidata 
ID 

Property  G1  G2  G1∩G2 

P2176  Drug used for 
treatment 

858  390  72 

P636  Route of 
administration 

2656  1255  1255 

P4044  Therapeutic area  5  171  3 
P769  Significant drug 

interaction 
82  42  3 

P2175  Medical 
condition 
treated 

620  1036  135 

P780  Symptoms  7015  4460  3749 
 

Among these statements, 5217 relations corresponded neither to the most common           

subject class nor to the most common object class of the considered properties. These              

results may be wrong statements that should be adjusted or deleted. However, they can also               

result from the lack of completeness of Wikidata taxonomy (i.e. a significant lack in defining               

relations between Wikidata items and corresponding classes). When applying expert          

 



validation to 800 randomly selected relations among the 5217 studied ones, we found that              

only 6.6% of these relations (53) were truly inaccurate and that the remaining 93.4% (747)               

were accurate but identified due to the lack of assignment of their subjects and objects to                

their hypernyms. The precision rate of the identification of deficient relations using this             

method seems to vary considering the studied property but does not exceed 10% (Fig. 8). 

 
Figure 8: Relations returned by Task T4 for the studied Wikidata properties [Available at: https://w.wiki/ao2, License: CC                 
BY 4.0]. Extracted relations verified by expert validation as deficient are represented in red. Note: log x-axis. 

Accordingly, the results sorted by Task T4 should be manually verified and validated             

by experts, so that users can use true identified relations (False positive) to enrich their               

respective subject and object Wikidata items with corresponding missing classes and find the             

reasons behind the deficiency of wrong identified relations (True positive) to develop            

automatic methods to solve them. The insufficiencies of wrong relations can either be due to               

ontological reasons (64%) or medicine-related reasons (36%) as shown in Fig. 9 and cannot              

consequently be handled only by computer scientists. Efforts in crowdsourcing ontology           

verification of other biomedical ontologies such as SNOMED-CT confirmed the existence of            

both types of errors and stipulated that not adjusting these lexical resources and using them               

in clinical decision support can generate harmful recommendations (Mortensen, et al.,           

2014). 

 

Figure 9: Reasons of the inaccuracy of the truly deficient identified relations (True positive) [Source: https://w.wiki/ao3, 
License: CC BY 4.0] 

 



Task T5 was efficient in finding the Wikidata properties used to define the references              

of the statements for each studied relation type (Table 9). For the studied Wikidata relation               

types, we found that references are mainly defined using three properties: stated in [P248],              

retrieved [P813], and reference URL [P854]. One of the highest priority tasks on Wikidata is               

for experts to find and add appropriate references using these three properties to currently              

unsupported Wikidata relations. Once the references are in the system, further refinement            

is possible, e.g. a reference URL [P854] containing (or pointing to a page that contains) an                

external identifier for which Wikidata has a suitable property - e.g. Digital Object Identifier              

[P356] - then that property could be added to an item about the cited references, and the                 

P854 statement replaced by a P248 statement pointing to that item. 

Table 9: Wikidata properties used to define references for studied Wikidata relation types: stated in (P248), retrieved                 

(P813), language of work or name (P407), National Drug File Reference Terminology ID (P2115), reference URL (P854),                 

and European Medicines Agency product number (P3637) 

Wikidata ID Property P248 P813 P407 P2115 P854 P3637 

P2176 Drug used for treatment 6654 6636 3617 3522 1626  

P636 Route of administration     2647  

P4044 Therapeutic area 1310 1310   1313 1310 

P769 Significant drug interaction 1757      

P2175 Medical condition treated 6683 6672 3533 3516 1719  

P780 Symptoms 257 114   7094  

 

6. Constraint-driven heuristics-based validation of epidemiological data 
The characterization of epidemiological data is possible using a variety of statistical            

measures that show the acuteness, the dynamics, and the prognosis of a given disease              

outbreak. These measures include the simple cumulative count of cases (P1603 [199569            

statements], noted c, as defined before), deaths (P1120 [243250 statements ], noted d),            21

recoveries (P8010 [36119 statements], noted r), clinical tests (P8011 [21249 statements],           

noted t), and hospitalized cases (P8049 [5755 statements], noted h) as well as several              

measurements done by the synthesis of the values of simple epidemiological counts such as              

case fatality rate (P3457 [51504 statements], noted m), basic reproduction number (P3492,            

noted R0), minimal incubation period in humans (P3488, noted mn), and maximal incubation             

period in humans (P3487, noted mx) (Rothman, Greenland, & Lash, 2008). For all these              

statistical data, every information should be coupled by a point in time (P585, noted Z)               

qualifier defining the date of the stated measurement and by a Determination method             

(P459, noted Q) qualifier identifying the measurement method of the given information as             

these variables are subject to change over days or according to used methods of              

computation.  

Thanks to the logic behind simple count statistics (c, t, d, h, and r statements), several                

conditions based on the comparison of epidemiological variables of a regional COVID-19            

21 As of August 8, 2020. For updated statistics, https://w.wiki/Z5m. 
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disease outbreak for a given date Z, the comparison of the statistical variation of an               

epidemiological variable over days, and the comparison between the epidemiological values           

of a general disease outbreak with the ones of its components (each defined as a part of                 

[P361] of the general outbreak) as shown in Table 10. Tasks V1 and V2 have been generated                 

from the evidence that COVID-19 started in late 2019 and that its clinical discovery can only                

be done through medical diagnosis techniques (Zu, et al., 2020). Tasks V3 and V4 have been                

derived from the fact that c, d, r, and t are cumulative counts. Consequently, these variables                

are only subjects to remain constant or increase over days. Task V5 is motivated by the fact                 

that a simple epidemiological count cannot return negative values. Tasks V6, V7, V8, and V9               

are due to the evidence that d, r, and h cannot be superior to c as a patient needs to be                     

affected by SARS-CoV-2 to die or be hospitalized due to the contraction of COVID-19              

(Rothman, Greenland, & Lash, 2008) and that a patient needs to undergo COVID-19 testing              

to be confirmed as a case of the disease (Zu, et al., 2020). V10 is built upon the assumption                   

that c, d, r, h, and t values can be geographically aggregated (Rothman, Greenland, & Lash,                

2008). 

Table 10: Tasks for the heuristics-based evaluation of epidemiological data using the Wikidata SPARQL endpoint 

Task Description 
Validating qualifiers of COVID-19 epidemiological statements 
V1 Verify Z as a date > November 01, 2019 
V2 Verify Q as any subclass of (P279*) of medical diagnosis (Q177719) 
Ensuring the cumulative pattern of c, d, r, and t 
V3 Identify c, d, r and t statements having a value in date Z+1 not superior or equal to the one in 

date Z (Verify if dZ ≤ dZ+1, rZ ≤ rZ+1, tZ ≤ tZ+1, and cZ ≤ cZ+1) 
V4 Find missing values of  c, d, r and t in date Z+1 where corresponding values in dates Z and Z+2 

are equal 
Validating values of epidemiological data for a given date 
V5 Identifying c, d, r, h, and t statements with negative values 
V6 Identify h statements having a value superior to the number of cases for a date Z 
V7 Identify c statements having a value superior or equal to the number of clinical tests for a 

date Z 
V8 Identify c statements having a value inferior to the number of deaths for a date Z 
V9 Identify c statements having a value inferior to the number of recoveries for a date Z 
V10 Comparing the epidemiological variables of a general outbreak with the ones of its 

components 

This task set has easily been applied using ten simple SPARQL queries that can be               

found in Appendix B where <PropertyID> is the Wikidata property to be analyzed and has               

returned 5496 deficiencies in the COVID-19 epidemiological information as shown in Table            

11. Among these mistaken statements, 2856 were number of cases statements, 2467 were             

number of deaths statements, 189 were number of recoveries statements, 9 were number of              

clinical tests statements, and 10 were number of hospitalized cases statements. This            

distribution of the deficiencies among epidemiological properties is explained by the           

dominance of number of cases and number of deaths statements on the COVID-19             

epidemiological information. Most of these mistakes are linked to a violation of the             

cumulative pattern of major variables. These deficiencies can be removed using tools for the              

 



automatic enrichment of Wikidata like QuickStatements (cf. Turki, et al., 2019) or adjusted             

one by one by active members of WikiProject COVID-19. 

Table 11: Number of deficient statements for every type of epidemiological Wikidata property identified by each task (As 
of August 8, 2020) 

 c d r t h Overall 

V1 18 9 10 2 1 40 

V2 2 91 6 0 0 99 

V3 660 92 6 5  763 

V4 2081 2247 149 1  4478 

V5 0 0 0 0 0 0 

V6 8    8 8 

V7 1   1  1 

V8 9 9    9 

V9 17  17   17 

V10 60 19 1 0 1 81 

Overall 2856 2467 189 9 10 5496 

Concerning the variables issued from the integration of basic epidemiological counts           

(m, R0, mn and mx statements), the situation is more complicated due to the complexity of                

the definition of these variables (Delamater, et al., 2019; Backer, Klinkenberg, & Wallinga,             

2020; Li, et al., 2020). The basic reproduction number (R0) is meant to be a constant that                 

characterizes the dissemination power of an infectious disease. It is defined as the expected              

number of people (within a community with no prior exposure to the disease) that can               

contract a disease via the same infected individual. This variable should exceed the threshold              

of 1 to define a contagious disease (Delamater, et al., 2019). Although R0 can give an idea                 

about the general behavior of an outbreak of a given disease, any calculated value depends               

on the model used for its computation (e.g. SIR Model) as well as the underlying data and is                  

consequently a bit imprecise and variable from one study to another (Delamater, et al.,              

2019). That is why It is not reliable to use this variable to evaluate the accuracy of simple                  

epidemiological counts for a given pandemic. The only heuristic that can be applied to this               

variable is to verify if its value exceeds 1 for diseases causing large outbreaks. The incubation                

period of a disease gives an overview of the silent time required by an infectious agent to                 

become active in the host organism and cause notable symptoms (Backer, Klinkenberg, &             

Wallinga, 2020; Li, et al., 2020). This variable is very important as it reveals how many days                 

an inactive case can spread the disease in the host’s environment before the host is being                

symptomatically identified. As a result, it can give an idea about the contagiousness of the               

infectious disease and its basic reproduction number (R0). However, the determination of            

the incubation period - especially for a novel pathogen - is challenging, as a patient often                

cannot identify with precision the day when they had been exposed to the disease, at least if                 

they did not travel to an endemic region or had not been in contact with a person they knew                   

to be infected. This factor was behind the measurement of falsely small incubation periods              

for COVID-19 at the beginning of COVID-19 epidemic in China (Backer, Klinkenberg, &             

Wallinga, 2020). Furthermore, the use of minimal (mn) and maximal (mx) incubation periods             

 



in Wikidata to epidemiologically describe a disease instead of the median incubation period             

is a source of a lack of accuracy of the extracted values (Backer, Klinkenberg, & Wallinga,                

2020; Li, et al., 2020). In fact, minimal and maximal incubation periods for a given disease                

are obtained in the function of the mean ( ) and standard deviation ( ) of the measures of        X     σ      

the confidence interval of observed incubation periods in patients. Effectively, mn is equal to              

and mx is equal to where n is the number of analyzed observationsX − z * σ
√n       X + z * σ

√n         

and z is a characteristic of the hypothetical statistical distribution and of the statistical              

confidence level adopted for the estimation (Altman, et al., 2013). As a consequence, mn              

and mx variables are modified according to the number of observations (n) with a smaller               

difference between the two variables for higher values of n. As well, the two measures also                

vary according to the used statistical distribution and that is why different values of mn and                

mx were reported for COVID-19 when applying different distributions (Weibull, gamma and            

log-normal distribution) using a confidence level of 0.95 on the same set of observed cases               

(Backer, Klinkenberg, & Wallinga, 2020). Similarly, the two variables can change according to             

the adopted confidence level (p - 1) when using the same statistical distribution where a               

higher confidence level is correlated with a higher difference between the calculated mn and              

mx values, as shown in Fig. 10 (Ward & Murray-Ward, 1999; Altman, et al., 2013). Given                

these reasons and despite the significant importance of the two measures, these two             

statistical variables cannot be used to evaluate statistical epidemiological counts for           

COVID-19 due to their lack of precision and difficulty of determination. 

 

Figure 10: Confidence intervals for different p-values (p) when using a normal distribution [Source: https://w.wiki/aKT,               
License: Public Domain] (after Ward & Murray-Ward, 1999). 

As for the reported case fatality rate (m), its definition is less intricate than the ones                

of the basic reproduction number and of the incubation period, as m is only the quotient of                 

the cumulative number of deaths (d) by the cumulative number of cases (c) as stated in                

official reports. It is consequently easy to validate for a given disease by comparing its values                

with simple reported counts of cases and deaths (Rothman, Greenland, & Lash, 2008). Here,              

two simple heuristics can be applied using SPARQL queries as shown in Appendix C. As the                

number of deaths is less than or equal to the number of cases of a given disease, m values                   

 



should be set between 0 and 1. That is why Task M1 is defined to extract m statements                  

where m > 1 or m < 0. Also, as m = d / c for a date Z, m values that are not close to the                           

corresponding quotients of deaths by disease cases should be identified as deficient and m              

values should be stated for a given date Z if mortality and morbidity counts exist. Thus, Task                 

M2 is created to extract m values where the absolute value of (m - d/c) is superior to 0.001,                   

and Task M3 is developed to identify (item, date) pairs where m statements are missing and                

c and d statements are available in Wikidata. Absolute values for Task M2 are obtained using                

SPARQL’s ABS function, and deficient (item, date) pairs are eliminated in Task M3 where m >                

1 and c < d. 

As a result of these three tasks, we interestingly identified 143 deficient m             

statements and 7116 missing m statements. 133 of the mistaken statements are identified             

thanks to Task M2 and concern 25 Wikidata items and 31 distinct dates and only 10 deficient                 

statements related to 3 Wikidata items and 8 distinct dates are found using Task M1. These                

statements should be verified against reference datasets to verify their values and to             

determine the reason behind their deficiency. Such a reason can be the integration of the               

wrong case and death counts in Wikidata or a bug or inaccuracy within the source code of                 

the bot making or updating such statements. The verification process can be automatically             

done using an algorithm that compares Wikidata values (c, d and m statements) with their               

corresponding ones in other databases (using file or API reading libraries) and subsequently             

adjusts statements using the Wikidata API directly or via tools like QuickStatements (Turki et              

al., 2019). As for the missing m statements returned by M3, they are linked to 395 disease                 

outbreak items and to 205 distinct dates and concern 70% (7116/10168) of the (case count,               

death count) pairs available in Wikidata. The outcome of M3 proves the efficiency of              

comparative constraints to enrich and assess the completeness of epidemiological data           

available in a knowledge graph, particularly Wikidata, based on existing information.           

Consequently, derivatives of Task M3 can build to infer d values based on c and m                

statements or to find c values based on d and m statements. The missing statements found                

by such tasks can be integrated in Wikidata using a bot based on Wikidata API and Wikidata                 

Query Service to ameliorate the completeness and integrity of available mortality data for             

epidemics, mainly the COVID-19 pandemic (Turki, et al., 2019).  

7. Discussion 
As shown, relational and statistical constraints have been demonstrated as efficient           

to identify use cases of a given relation type in a knowledge graph like Wikidata (Tables 5                 

and 6), to verify the completeness of inverse statements (Table 7), and to aid experts to find                 

deficiencies within the taxonomy and the non-taxonomic relations of assessed knowledge           

graphs (Table 8 and Figures 8 and 9). This finding - combined with previous findings on the                 

usefulness of SPARQL to find inconsistencies in semantic data based on known conditions             

particularly in the context of bioinformatics (Bolleman, et al., 2020; Marx & Krötzsch, 2017) -               

significantly proves the efficiency of rule-based approaches to evaluate semantic          

information from scratch by successfully addressing most of the competency questions,           

particularly conceptual orientation (clarity), coherence (consistency), strength (precision) and         

full coverage (completeness) with a similar accuracy as other available ontology evaluation            

 



algorithms (Amith, et al., 2019; Zhang & Bodenreider 2010). The scope of rule-based             

methods can be similarly expanded to cover other competency questions such as            

non-redundancy (conciseness) through the proposal of other logical constraints to tackle           

them such as a condition to find taxonomic relations to trim in a knowledge graph (Examples                

can be found at https://www.wikidata.org/wiki/Wikidata:Database_evaluation). The main       

limitation of applying the logical constraints using SPARQL in the context of Wikidata is that               

the runtime of a query that infers or verifies a complex condition or that analyzes a huge                 

amount of class items or property use cases can exceed the timeout limit of the used                

endpoint (Malyshev, et al., 2018).  

These evaluation assignments covered by our approach can be done by other            

rule-based (structure-based and semantic-based) ontology evaluation methods.       

Structure-based methods verify if a knowledge graph is defined according to a set of              

formatting constraints and semantic-based methods check if concepts and statements of a            

knowledge graph meet logical conditions (Amith, et al., 2018). Some of these methods are              

software tools, particularly Protégé extensions such as OWLET (Lampoltshammer &          

Heistracher, 2014) and OntoCheck (Schober, et al., 2012). OWLET infers the JSON schema             

logics of a given knowledge graph, converts them into OWL-DL axioms, and uses the              

semantic rules to validate the assessed ontological data (Lampoltshammer & Heistracher,           

2014). OntoCheck screens an ontology to identify structural conventions and constraints for            

the definition of the analyzed relational information and consequently to homogenize the            

data structure and quality of the ontology by eliminating typos and pattern violations             

(Schober, et al., 2012). Here, the advantage of applying constraints using SPARQL is that its               

runtime is faster, as it does not require the download of the full dumps of the evaluated                 

knowledge graph (Malyshev, et al., 2018). The benefit of our method and other             

structure-based and semantic-based web-based tools for knowledge graph validation like          

OntoKeeper (Amith, et al., 2019) and adviseEditor (Geller, et al., 2013) when compared to              

software tools is that the maximal size of the knowledge graphs that can be assessed by web                 

services is larger than the one that can be evaluated by software tools because the latter                

depends on the requirements and capacities of the host computer (Lampoltshammer &            

Heistracher, 2014; Schober, et al., 2012). It is true that these drawbacks of other              

structure-based tools can be solved through the simplification of the knowledge graph by             

reducing redundancies using techniques like ontology trimming (Jantzen, et al., 2011) or            

through the construction of an abstraction network to decrease the complexity of the             

analyzed knowledge graph (Amith, et al., 2018; Halper, et al., 2015). However, knowledge             

graph simplification processes are time-consuming and resulting time gain can consequently           

be insignificant (Jantzen, et al., 2011; Amith, et al., 2018; Halper, et al., 2015). 

Such tasks can be also solved using data-driven ontology evaluation methods. These            

techniques process texts in natural languages to validate the concepts and statements of a              

knowledge graph and currently include intrinsic (lexical-based) and extrinsic         

(cross-validation, big data-based and corpus-based) methods (Amith, et al., 2018).          

Lexical-based methods compare the terms and glosses of the items of a knowledge graph              

with the statements involving the analyzed items, mainly the taxonomic ones, to identify             

inconsistencies in the labels, descriptions or semantic relations of items (Amith, et al., 2018).              
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Lexical-based approaches use rules implemented in SQL or SPARQL to retrieve terms or             

glosses corresponding to a concept and their corresponding semantic relations, mostly           

subclass of statements (Rector & Iannone, 2012; Luo, Mejino Jr, & Zhang, 2013). The output               

is later analyzed using natural language processing techniques such as hamming distance            

measure (Luo, Mejino Jr, & Zhang, 2013), semantic annotation tools (Rector & Iannone,             

2012) and semantic similarity measures (Amith, et al., 2018) to comparatively identify            

deficiencies in the semantic representation, labelling and symmetry of the assessed           

knowledge graph. Extrinsic data-based methods extract the usage and linguistic patterns           

from raw text corpuses such as bibliographic databases and clinical records (Corpus-based            

methods) or from gold standard semantic resources like large ontologies and knowledge            

graphs (Cross-validation methods) or from social media posts and interactions, Internet of            

Things data or web service statistics (Big data-based methods) (Amith, et al., 2018; Sebei,              

Hadj Taieb, & Ben Aouicha, 2018; Rector, Brandt, & Schneider, 2011; Gangemi, et al., 2005)               

using structure-based and semantic-based ontology evaluation methods as explained above          

(Rector, Brandt, & Schneider, 2011) as well as a range of techniques including machine              

learning (Bean, et al., 2017; Zhang, et al., 2018), topic modelling using latent dirichlet              

analysis (Abd-Alrazaq, et al., 2020), word embeddings (Zhang, et al., 2019), statistical            

correlations (Vanderkam, et al., 2013) and semantic annotation methods (Li, et al., 2016).             

The returned features of the analyzed resources are compared to the ones of the analyzed               

knowledge graph to assess the accuracy and completeness of the definition and use of              

concepts and properties (Amith, et al., 2018). 

When compared to our proposed approach, lexical-based methods have the          

advantage to identify and adjust characteristics of a knowledge graph item based on its              

natural language information of a knowledge graph item, particularly terms and glosses            

(Rector & Iannone, 2012; Luo, Mejino Jr, & Zhang, 2013). The drawbacks of using semantic               

similarity, word embeddings and topic modelling approaches in such approaches is that            

these techniques are sensitive to the used parameters, to input characteristics and to the              

chosen models of computation and can consequently give different results according to the             

context of determination (Lastra-Díaz, et al., 2019; Hadj Taieb, Zesch, & Ben Aouicha, 2020).              

The current role of constraints in the extraction of lexical information and respective             

semantic relations (Rector & Iannone, 2012; Luo, Mejino Jr, & Zhang, 2013) proves that the               

scope of constraint-based validation should not only restricted to rule-based evaluation but            

also to lexical-based evaluation. Yet, the function of logical conditions should be expanded             

to refine the list of (lexical information, semantic relation) pairs to identify deficient and              

missing semantic relations and defective lexical data with a better accuracy and to support              

the processing of the multilingual lexical information in lexical-based methods as there are             

currently many SPARQL functions that are applied to analyze strings in knowledge graphs             22

such as STRLEN (length of a string), STRSTARTS (verification of a substring beginning a given               

string), STRENDS (verification of a substring finishing a given string), and CONTAINS            

(verification of a substring included in a given string) (DuCharme, 2013; Harris, Seaborne, &              

Prud’hommeaux, 2013).  

22 Detailed information about string functions in SPARQL can be found at 
https://www.w3.org/TR/sparql11-query/#func-strings . 
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As for the extrinsic data-driven methods, they are mainly based on large-scale            

resources that are regularly curated and enriched. Raw-text corpuses are mainly composed            

of scholarly publications (Raad & Cruz, 2015) and blog posts (Park, et al., 2016). Information               

in scholarly publications are ever changing according to the dynamic advances in scholarly             

knowledge, particularly medical data (Jalalifard, Norouzi, & Isfandyari-Moghaddam, 2013).         

This expansion of scientific information in scholarly publications is highly recognized in the             

context of COVID-19 where detailed information about COVID-19 disease and the           

SARS-CoV-2 virus is published within less than six months (Kagan, Moran-Gilad, & Fire,             

2020). Big data is the set of real-time statistical and textual information that is generated by                

web services including search engines and social media and by Internet of Things objects              

including sensors (Sebei, Hadj Taieb, & Ben Aouicha, 2018). This data is characterized by its               

value, variety, variability, velocity, veracity and volume (Sebei, Hadj Taieb, & Ben Aouicha,             

2018) and can be consequently used to track the changes of the community knowledge and               

consciousness over time (Abd-Alrazaq, et al., 2020; Turki, et al., 2020). Large semantic             

resources are ontologies and knowledge graphs that are built and curated by a community              

of specialists and that are regularly verified, updated and enriched using human efforts and              

computer programs (Lee, et al., 2013). These resources represent broad and reliable            

information about a given specialty through machine learning techniques (Zhang, et al.,            

2018) and the crowdsourcing of scientific efforts (Mortensen, et al., 2014) and can be              

consequently compared to other semantic databases for validation purposes. Examples of           

these resources are COVID-19 Disease Map (Ostaszewski, et al., 2020) and SNOMED-CT (Li,             23

et al., 2013). Given the dynamic characteristics of corpuses, big data and large-scale             

knowledge graphs, extrinsic data-driven methods can be more efficient than rule-based and            

lexical-based approaches, particularly the ones based on constraints, in identifying recent           

changes in the logical and semantic conditions for the definition of knowledge in a particular               

domain and accordingly adjusting the assessed knowledge graph (Amith, et al., 2018).            

Nonetheless, the growing and changing nature of gold standard resources require important            

human efforts (Mortensen, et al., 2014) and an advanced software architecture to maintain             

(e.g. structure-based and semantic-based methods), process (e.g. word embeddings and          

latent dirichlet analysis) and store (e.g. Hadoop and MapReduce) these reference resources            

on a daily basis (Li, et al., 2013; Sebei, Hadj Taieb, & Ben Aouicha, 2018). This architecture                 

needs advanced hardware requirements and its results are subject to change according to             

used parameters (Sebei, Hadj Taieb, & Ben Aouicha, 2018). That is why constraint-based             

methods can be easier to apply than extrinsic data-driven knowledge graph evaluation            

methods. 

These tasks are in line with the usage of Shape Expressions as well as property               

constraints and relations for the validation of data quality and completeness of the semantic              

information of class items in knowledge graphs as shown in the “Knowledge graph validation              

of Wikidata” section. A ShEx ShapeMap is a pair of a triple pattern for selecting entities to                 

validate and a shape against which to validate them. This allows for the definition of the                

properties to be used for the items of a given class (Prud'hommeaux, Labra Gayo, & Solbrig,                

2014; Waagmeester, et al., 2020a) and property constraints and relations based on the             

23 Systematized Nomenclature Of Medicine - Clinical Terms 

 



meta-ontology (i.e. data skeleton) of Wikidata. Expressions written in shape-based property           

usage validation languages for RDF (e.g. SHACL) can be used to state conditions and              

formatting restrictions for the usage of relational and non-relational properties (Erxleben, et            

al., 2014; Thornton, et al., 2019; Gangemi, et al., 2005). SPARQL can be more efficient in                

inferring such information than the currently existing techniques that screen all the items             

and statements of a knowledge graph one by one to identify the conditions for the usage of                 

properties (e.g. SQID) mainly because SPARQL is meant to directly extract information            

according to a pattern without having to evaluate all the conditions against all items of a                

knowledge graph (Marx & Krötzsch, 2017; Hanika, et al., 2019; Pérez, Arenas, & Gutierrez,              

2009). 

The separate execution of value-based constraints is common in the quality control            

of XML data. Typically, structural constraints are managed by RelaxNG or XML Schemas,             

while value-based constraints are captured as Schematron. Much as Schematron rules are            

typically embedded in RelaxNG, the consistency constraints presented above can be           

embedded in Shape Expressions Semantic Actions or in SHACL-SPARQL as shown in Fig. 11.              

These supplement structural schema languages with mechanisms to capture value-based          

constraints and in doing so, provide context for the enforcement of those constraints. The              

implementation of value-based constraints shown in the “Constraint-driven heuristics-based         

validation of epidemiological data” section can likewise be implemented in a shapes            

language (Labra-Gayo, et al., 2019). Parsing the rules in Table 3 and 10 would allow the                

mechanical generation or augmentation of shapes, providing flexibility for how the rules are             

expressed while still exploiting the power of shapes languages for validation. 

 

Figure 11: Interactions between consistency rules, property statements and RDF validation languages [Source: 
https://w.wiki/ao5, License: CC BY 4.0] 

8. Conclusion 
In this paper, we investigate how to best assess COVID-19 knowledge in collaborative             
ontologies and knowledge graphs (particularly Wikidata) using relational and statistical          
constraints. Collaborative databases produced through the cumulative edits of thousands of           
users are able to generate huge amounts of structured information (Turki, et al., 2019) but               
as a result of their entirely uncoordinated development, they often result in uneven             
coverage of crucial information and inconsistent expression of that information. The           

 



resulting gaps are a significant problem (false negatives, false positives, reasoning           
deficiencies, and missing references). Avoiding, identifying, and closing these gaps is           
therefore of top importance. We presented a standardized methodology for auditing key            
aspects of data quality and completeness for these resources . 

24

 
This approach complements and informs shape-based methods for data conformance to           
community-decided schemas. The SPARQL execution does not require any pre-processing,          
and is not only restricted to the validation of the representation of a given item according to                 
a reference data model but also to the comparison of the assessed relational and statistical               
statements. Our method is demonstrated as useful for measuring the overall accuracy and             
data quality on a subset of Wikidata and is consequently a necessary first step in any pipeline                 
for detecting and fixing issues in collaborative ontologies and knowledge graphs. As a future              
direction, we will investigate how biomedical knowledge, particularly COVID-19 information          
are integrated to Wikidata and dynamically visualized using SPARQL queries, we will consider             
detailed information about the timely evolution of knowledge graphs in our methods for             
constraint-based validation by incorporating edit history SPARQL endpoint APIs of          
knowledge graphs (Pellissier Tanon & Suchanek, 2019, Dos Reis, Pruski, Da Silveira, &             
Reynaud-Delaître, 2014). We will also couple the information inferred using this method            

25

with Shape Expressions and the explicit constraints of relation types to provide a more              
effective enrichment, refinement, and adjustment of collaborative ontologies and         
knowledge graphs. 
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Appendix A: SPARQL queries for the inference of the usage constraints of            

relation types in Wikidata 
Task SPARQL query 
T1 SELECT ?Cs ?CsLabel ?Co ?CoLabel (COUNT(*) AS ?count) 

WHERE { 
 ?S wdt:<PropertyID> ?O. 
 ?S wdt:P31 ?Cs. 
 ?O wdt:P31 ?Co. 
 FILTER NOT EXISTS { 
   {?Cs wdt:P31 wd:Q24017414} UNION {?Co wdt:P31 wd:Q24017414}. 
 } 
 SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 
GROUP BY ?Cs ?CsLabel ?Co ?CoLabel 
ORDER BY DESC(?count) 
LIMIT 5 

T2 SELECT ?Cs ?CsLabel ?P1 ?Co ?CoLabel (COUNT(*) AS ?count) 
WHERE { 
 ?S wdt:<PropertyID> ?O. 
 ?O ?P1 ?S. 
 ?S wdt:P31 ?Cs. 
 ?O wdt:P31 ?Co. 
 FILTER NOT EXISTS { 
   {?Cs wdt:P31 wd:Q24017414} UNION {?Co wdt:P31 wd:Q24017414}. 
 } 
 SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 
GROUP BY ?Cs ?CsLabel ?P1 ?Co ?CoLabel 
ORDER BY DESC(?count) 
LIMIT 5 

T3 SELECT ?S ?SLabel ?O ?OLabel ?statement ?p ?ref ?refLabel WHERE { 
 ?S p:<PropertyID> ?statement. 
 ?statement ps:<PropertyID> ?O 
 ?S wdt:<PropertyID> ?O. 
 ?S wdt:P31 wd:<SubjectID>. 
 ?O wdt:P31 wd:<ObjectID>. 
 ?statement prov:wasDerivedFrom [?p ?ref] . 
 FILTER NOT EXISTS {?O ?P1 ?S.} 
 SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 

T4 G1: Statements where the subject is not an instance of the most used subject 
class: 
 
SELECT ?S ?SLabel ?O ?OLabel 
WHERE { 
 ?S wdt:<PropertyID> ?O. 
 FILTER NOT EXISTS { 
  ?S wdt:P31* wd:<SubjectID>. 
 } 
SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 

 



 
G2: Statements where the object is not an instance of the most used object 
class: 
 
SELECT ?S ?SLabel ?O ?OLabel 
WHERE { 
 ?S wdt:<PropertyID> ?O. 
 FILTER NOT EXISTS { 
  ?O wdt:P31* wd:<ObjectID>. 
 } 
 SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 

T5 SELECT ?p (COUNT(?p) AS ?count) WHERE { 
 ?S p:<PropertyID> ?statement. 
 ?statement ps:<PropertyID> ?O. 
 ?S wdt:<PropertyID> ?O. 
 ?statement prov:wasDerivedFrom [?p ?ref] . 
} 
GROUP BY ?p 
ORDER BY DESC(?count) 

 

Appendix B: SPARQL queries for the heuristics-based validation of         

epidemiological counts in Wikidata 
Task SPARQL query 
V1 SELECT * WHERE { 

  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?date]. 
  FILTER(YEAR(?date) < 2019) 
  } 

V2 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P459 ?method]. 
  FILTER NOT EXISTS {?method wdt:P279* wd:Q177719} 
  } 

V3 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?datep]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value1; pq:P585 ?date]. 
  FILTER(?value > ?value1) 
  FILTER(?datep - ?date = -1) 
  } 

V4 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?datep]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value1; pq:P585 ?datef]. 
  FILTER(?value = ?value1) 
  FILTER(?datep - ?datef = -2) 
  FILTER NOT EXISTS { ?x p:<PropertyID> [ps:<PropertyID> ?value2; pq:P585 
?date]. 
                      FILTER(?date = ?datep + 1) 
                    } 
} 

V5 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?date]. 
  FILTER(?value < 0) 

 



  } 
V6 SELECT * WHERE { 

  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:P8049 [ps:P8049 ?h; pq:P585 ?date]. 
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  FILTER(?h > ?c) 
  } 

V7 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:P8011 [ps:P8011 ?t; pq:P585 ?date]. 
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  FILTER(?c >= ?t) 
  } 

V8 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date]. 
  FILTER(?c < ?d) 
  } 

V9 SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  ?x p:P8010 [ps:P8010 ?r; pq:P585 ?date]. 
  FILTER(?c < ?r) 
  } 

V10 SELECT ?y ?date ((?count - ?c1) AS ?diff) WHERE { 
SELECT ?y ?c1 ?date (SUM(?c) AS ?count) WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:<PropertyID> [ps:<PropertyID> ?c; pq:P585 ?date]. 
  ?x wdt:P361 ?y. 
  ?y p:<PropertyID> [ps:<PropertyID> ?c1; pq:P585 ?date].  
  } 
GROUP BY ?y ?c1 ?date 
} 
ORDER BY DESC(?diff) 

 

Appendix C: SPARQL queries for the validation of case fatality rate statements            

in Wikidata 

Tas
k 

SPARQL query 

M1  SELECT * WHERE { 
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  ?x p:P3457 [ps:P3457 ?value; pq:P585 ?date]. 
  FILTER((?value > 1) || (?value < 0)) 
  } 

M2 SELECT ?x ?c ?d ?value ?date (ABS(?value - ?d / ?c) > 0.001 AS ?diff) 
WITH { 
  SELECT ?x { 
    ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  } 
} as %outbreaks 
WITH { 
  SELECT ?x ?value ?date { 
    INCLUDE %outbreaks. 
    ?x p:P3457 [ps:P3457 ?value; pq:P585 ?date]. 

 



  } 
} as %casefatalityrates 
WITH { 
  SELECT ?x ?d ?date { 
    INCLUDE %outbreaks. 
    ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date]. 
  } 
} as %deaths 
WITH { 
  SELECT ?x ?c ?date { 
    INCLUDE %outbreaks. 
    ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  } 
} as %cases 
WHERE { 
  INCLUDE %casefatalityrates. INCLUDE %deaths. INCLUDE %cases. 
} 
ORDER BY DESC(?diff) 

M3 SELECT ?x ?c ?d ?date ((?d / ?c) AS ?m) 
WITH { 
  SELECT ?x { 
    ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196]. 
  } 
} as %outbreaks 
WITH { 
  SELECT ?x ?d ?date { 
    INCLUDE %outbreaks. 
    ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date]. 
  } 
} as %deaths 
WITH { 
  SELECT ?x ?c ?date { 
    INCLUDE %outbreaks. 
    ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date]. 
  } 
} as %cases 
WHERE { 
  INCLUDE %deaths. INCLUDE %cases. 
  FILTER NOT EXISTS {?x p:P3457 [ps:P3457 ?value; pq:P585 ?date].} 
} 

 

 

 

 


