
Submitted 26 May 2020
Accepted 25 October 2020
Published 23 November 2020

Corresponding author
Herminio García-González, garciaher-
minio@uniovi.es

Academic editor
James Procter

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.318

Copyright
2020 García-González et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

ShExML: improving the usability of
heterogeneous data mapping languages
for first-time users
Herminio García-González1, Iovka Boneva2, Sławek Staworko2, José Emilio
Labra-Gayo1 and Juan Manuel Cueva Lovelle1

1Deparment of Computer Science, University of Oviedo, Oviedo, Asturias, Spain
2University of Lille, INRIA, Lille, Nord-Pas-de-Calais, France

ABSTRACT
Integration of heterogeneous data sources in a single representation is an active field
with many different tools and techniques. In the case of text-based approaches—
those that base the definition of the mappings and the integration on a DSL—there
is a lack of usability studies. In this work we have conducted a usability experiment
(n= 17) on three different languages: ShExML (our own language), YARRRML and
SPARQL-Generate. Results show that ShExML users tend to perform better than those
of YARRRML and SPARQL-Generate. This study sheds light on usability aspects of
these languages design and remarks some aspects of improvement.

Subjects Human-Computer Interaction, Artificial Intelligence, World Wide Web and Web
Science, Programming Languages
Keywords Data integration, Data mapping, ShExML, YARRRML, Usability, SPARQL-Generate

INTRODUCTION
Data integration is the problem of mapping data from different sources so that they can be
used through a single interface (Halevy, 2001). In particular, data exchange is the process
of transforming source data to a target data model, so that it can be integrated in existing
applications (Fagin et al., 2005). Modern data exchange solutions require from the user to
define a mapping from the source data model to the target data model, which is then used
by the system to perform the actual data transformation. This process is crucial to many
applications nowadays as the number of heterogeneous data sources is growing (Reinsel,
Gantz & Rydning, 2018).

Although many technologies have appeared through the years, the emergence of the
semantic web (Berners-Lee, Hendler & Lassila, 2001) offered new perspectives for data
integration. The semantic web principle recommends to represent entities through a
unique Internationalized Resource Identifier (IRI) which allows creation of implicit
links between distinct datasets simply by reusing existing IRIs. Moreover, the Resource
Description Framework (RDF), which is the advocated data format for the semantic web, is
compositional, meaning that one can simply fuse data sources without the use of a specific
merger. These characteristics make RDF a privileged format for data integration and thus
a target for data exchange and transformation.

How to cite this article García-González H, Boneva I, Staworko S, Labra-Gayo JE, Cueva Lovelle JM. 2020. ShExML: improving the us-
ability of heterogeneous data mapping languages for first-time users. PeerJ Comput. Sci. 6:e318 http://doi.org/10.7717/peerj-cs.318

https://peerj.com/computer-science
mailto:garciaherminio@uniovi.es
mailto:garciaherminio@uniovi.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.318
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.318

1see https://data.bnf.fr/en/about for more
information on the project.

The most notable example of an RDF based data integration system is Wikidata
(https://www.wikidata.org/) where multiple contributors—humans or robots—transform
data from different sources and integrate it to the Wikidata data store. Another example is
the data.bnf.fr1 project that exposes in RDF format the catalog of the French National
Library (BNF) by interlinking it with other datasets around the world.

Initially, the only way to perform these data transformations was to use ad-hoc scripts
designed to take one data source and transform it to an RDF output. This supposed the
creation of a dedicated script for every new input data source that needed to be converted.
Such solutions are slow and costly to develop.

Later on, Domain Specific Language (DSL) approaches emerged which are able to define
a translation in a declarative fashion instead of an imperative one. This technique lowers
the development time, but a script for every different data source is still needed, which can
be a maintenance issue.

More recent systems allow direct transformation of multiple data sources into a single
representation. Some of them provide dedicated DSLs in which a single script defines the
multi-source transformation, others provide graphical interfaces. This is an improvement
compared to previous techniques as in principle it allows for faster development and
improved maintainability (Meester et al., 2019). However, the adoption of such systems
depends also on their usability (Hanenberg, 2010).

With usability in mind we have designed the ShExML (García-González, Fernández-
Álvarez & Gayo, 2018) language that allows transformation and integration of data
from XML and JSON sources in a single RDF output. ShExML uses Shape Expressions
(ShEx) (Prud’hommeaux, Labra Gayo & Solbrig, 2014) for defining the desired structure of
the output. ShExML has text based syntax (in contrast to graphical tools) and is intended
for users that prefer this kind of representation. Our hypothesis is that for first-time users
with some programming and Linked Data background, data integration is performedmore
easily using ShExML than using one of the existing alternatives. The consequent research
questions that we study in the current paper are:

• RQ1: Is ShExML more usable for first-time users over other languages?
• RQ2: If true, can a relation be established between features support and usability for
first-time users?
• RQ3: Which parts of ShExML—and of other languages—can be improved to increase
usability?

In the case of this work we are going to focus on usability of tools based on a DSL and
see how the design of the language can have an effect on usability and associated measures
such as: development time, learning curve, etc.

The rest of the paper is structured as follows: ‘Background’ studies the related work, in
‘Presentation of the Languages Under Study’ the three languages are compared alongside
a features comparison between them, in ‘Methodology’ we describe the methodology
followed in the study, in ‘Results’ the results are presented along with their statistical
analysis. In ‘Discussion’ we discuss and interpret the results and in ‘Conclusions and
Future Work’ we draw some conclusions and propose some future lines from this work.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 2/27

https://data.bnf.fr/en/about
https://peerj.com
https://www.wikidata.org/
http://dx.doi.org/10.7717/peerj-cs.318

BACKGROUND
We first review available tools and systems for generating RDF from different systems
for data representation. These can be divided into one-to-one and many-to-one
transformations. We also survey existing studies on the effectiveness of heterogeneous
data mapping tools.

One to one transformations
Much research work has been done in this topic where conversions and technologies were
proposed to transform from a structured format (e.g., XML, JSON, CSV, Databases, etc.)
to RDF.

From XML to RDF
In XML ecosystem many conversions and tools have been proposed:

Miletic et al. (2007) describe their experience with the transformation of RDF to XML
(and vice versa) and from XML Schema to RDF Schema. Deursen et al. (2008) propose a
transformation fromXML to RDFwhich is based on an ontology and amapping document.
An approach to convert XML to RDF using XML Schema is reported by Battle (2004) and
Battle (2006). Thuy et al. (2008) describe how they perform a translation fromXML to RDF
using a matching between XML Schema and RDF Schema. The same procedure was firstly
proved with amatching betweenDTD and RDF Schema by the same authors in (Thuy et al.,
2007). Breitling (2009) reports a technique for the transformation between XML and RDF
by means of the XSLT technology which is applied to astronomy data. Another approach
that uses XSLT attached to schemata definitions is described by Sperberg-McQueen & Miller
(2004). However, use of XSLT for lifting purposes tends to end up in complex and non
flexible stylesheets. Thus, Bischof et al. (2012) present XSPARQL, a framework that enables
the transformation between XML and RDF by using XQuery and SPARQL to overcome
the drawbacks of using XSLT for these transformations.

From JSON to RDF
Although in the JSON ecosystem there are less proposed conversions and tools, there are
some works that should be mentioned.

Müller et al. (2013) present a transformation of a RESTful API serving interlinked
JSON documents to RDF for sensor data. An RDF production methodology from JSON
data tested on the Greek open data repository is presented by Theocharis & Tsihrintzis
(2016). Freire, Freire & Souza (2017) report a tool able to identify JSON metadata, align
themwith vocabulary and convert it to RDF; in addition, they identify themost appropriate
entity type for the JSON objects.

From tabular form to RDF
The importance of CSV (along with its spreadsheet counterparts) has influenced work in
this ecosystem:

Ermilov, Auer & Stadler (2013) present a mapping language whose processor is able to
convert from tabular data to RDF. A tool for translating spreadsheets to RDF without the
assumption of identical vocabulary per row is described by Han et al. (2008). Fiorelli et

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

al. (2015) report a platform to import and lift from spreadsheet to RDF with a human-
computer interface. Using SPARQL 1.1 syntax TARQL (http://tarql.github.io/) offers an
engine to transform from CSV to RDF. CSVW proposed a W3C Recommendation to
define CSV to RDF transformations using a dedicated DSL (Tandy, Herman & Kellogg,
2015).

From databases to RDF
Along with the XML ecosystem, relational database transformation to RDF is another field:

Bizer & Seaborne (2004) present a platform to access relational databases as a virtual RDF
store. A mechanism to directly map relational databases to RDF and OWL is described
by Sequeda, Arenas & Miranker (2012); this direct mapping produces a OWL ontology
which is used as the basis for the mapping to RDF. Triplify (Auer et al., 2009) allows
to publish relational data as Linked Data converting HTTP-URI requests to relational
database queries. One of the most relevant proposals is R2RML (Das, Sundara & Cyganiak,
2012) that became a W3C Recommendation in 2012. R2RML offers a standard language
to define conversions from relational databases to RDF. In order to offer a more intuitive
way to declare mapping from databases to RDF, Stadler et al. (2015) presented SML which
bases its mappings into SQL views and SPARQL construct queries.

More comprehensive reviews of tools and comparisons of tools for the purpose of lifting
from relational databases to RDF are presented by (Michel, Montagnat & Zucker, 2014;
Hert, Reif & Gall, 2011; Sahoo et al., 2009).

Many to one transformations
Many to one transformations is a recent topic which has evolved to overcome the problem
that one to one transformations need a different solution for each format and that
subsequently must be maintained.

Source-centric approaches
Source-centric approaches are those that, even giving the possibility of transforming
multiple data sources to multiple serialisation formats, they base their transformation
mechanism in one to one transformations. This can deliver optimal results—if
exported to RDF—due to RDF compositional property. Some of the tools available
are: OpenRefine (http://openrefine.org/) which allows to perform data cleanup and
transformation to other formats, DataTank (http://thedatatank.com/) which offers
transformation of data by means of a RESTful architecture, Virtuoso Sponger (http:
//vos.openlinksw.com/owiki/wiki/VOS/VirtSponger) is a middleware component of
Virtuoso able to transform from a data input format to another serialisation format,
RDFizers (http://wiki.opensemanticframework.org/index.php/RDFizers) employs the
Open Semantic Framework to offer hundreds of different format converters to RDF. The
Datalift (Scharffe et al., 2012) framework also offers the possibility of transforming raw
data to semantic interlinked data sources.

Text-based approaches
The use of amapping language as the way to define all themappings for various data sources
was first introduced by RML (Dimou et al., 2014) which extends R2RML syntax (Turtle

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 4/27

https://peerj.com
http://tarql.github.io/
http://openrefine.org/
http://thedatatank.com/
http://vos.openlinksw.com/owiki/wiki/VOS/VirtSponger
http://vos.openlinksw.com/owiki/wiki/VOS/VirtSponger
http://wiki.opensemanticframework.org/index.php/RDFizers
http://dx.doi.org/10.7717/peerj-cs.318

based) to cover heterogeneous data sources. With RML implementations it is possible
to gather data from: XML, JSON, CSV, Databases and so on; and put them together
in the same RDF output. A similar approach was also followed in KR2RML (Slepicka
et al., 2015) which proposed an alternative interpretation of R2RML rules paired with
a source-agnostic processor facilitating data cleaning and transformation. To deal with
non-relational databases, Michel et al. (2015) presented xR2RML language which extends
R2RML and RML specifications. Then, SPARQL-Generate (Lefrançois, Zimmermann &
Bakerally, 2016) was proposed which extends SPARQL syntax to serve as a mapping
language for heterogeneous data. This solution has the advantage of using a verywell-known
syntax in the semantic web community and that its implementation is more efficient than
RMLmain one (i.e., RMLMapper (https://github.com/RMLio/RML-Mapper)) (Lefrançois,
Zimmermann & Bakerally, 2017). To offer a simpler solution for users of text-based
approaches, YARRRML (Heyvaert et al., 2018) was introduced which offers a YAML based
syntax and its processor (https://github.com/RMLio/yarrrml-parser) performs a translation
to RML rules.

Graphical-based approaches
Graphical tools offer an easier way to interact with the mapping engine and are more
accessible to non-expert users. Some of the tools mentioned in the previous source-
centric approaches section have graphical interfaces, like OpenRefine and DataTank.
RMLEditor (Heyvaert et al., 2016) offers a graphical interface for the creation of RML
rules.

Related studies
Some studies have been made to evaluate available tools and languages. Lefrançois,
Zimmermann & Bakerally (2017) compared SPARQL-Generate implementation to
RMLMapper. Their results showed that SPARQL-Generate has a better computational
performance when transforming more than 1500 CSV rows in comparison with
RMLMapper. They also concluded that SPARQL-Generate language is easier to learn and
use for semantic web practitioners (who are likely already familiar with SPARQL), but this
was based on a limited analysis of the cognitive complexity of query/mappings in the two
languages. RMLEditor, a graphical tool to generate RML rules was proposed byHeyvaert et
al. (2016). They performed a usability evaluation for their tool with semantic web experts
and non-experts. In the case of semantic web experts they also evaluate the differences
between the textual approach (RML) and this new visual one. However, RMLEditor was
neither compared with other similar tools nor RML with other languages. Heyvaert et al.
(2018) proposed YARRRML as a human-readable text-based representation which offers
an easier layer on top of RML and R2RML. However, the authors did not present any
evaluation of this language.Meester et al. (2019)made a comparative characteristic analysis
of different mapping languages. However, a qualitative analysis is not performed and
usability is only mentioned in NF1 ‘‘Easy to use by Semantic Web experts’’ which only
YARRRML and SPARQL-Generate achieve.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 5/27

https://peerj.com
https://github.com/RMLio/RML-Mapper
https://github.com/RMLio/yarrrml-parser
http://dx.doi.org/10.7717/peerj-cs.318

Thus, to the best of our knowledge no usability study was performed in these languages
which share the easiness of use as one of their goals. Therefore, we introduce this study as
a first step into the usability evaluation of heterogeneous data mapping languages.

PRESENTATION OF THE LANGUAGES UNDER STUDY
In this section we compare YARRRML, SPARQL-Generate and ShExML syntax by means
of a simple example. These three tools each offer a DSL able to define mappings for
heterogeneous data sources like we have seen in the previous section and their designers
share the goal to be user friendly (Meester et al., 2019; García-González, Fernández-Álvarez
& Gayo, 2018). RML and similar alternatives are not included in the comparison because
they have a verbose syntax very close to the RDF datamodel.While itmight be an interesting
solution for users without any programming knowledge but familiar with RDF, we consider
it more like a lower level middle language to compile to rather than a language to be used
by programmers and data engineers. Indeed, YARRRML and ShExML engines are able to
compile their mappings to RML.

For the sake of the example two small files on JSON and XML are presented in Listing 1
and Listing 2 respectively. Each one of these files define two films with 6 attributes—that
could differ on name and structure—that will be translated to the RDF output showed
in Listing 3. In this example, and with the aim to keep it simple, different ids are used in
each entity; however, it is possible to use objects with same ids that could be merged into
a single entity or divided into different new entities depending on users’ intention.

Listing 1: JSON films file
{

"films": [
{

"id": 3,
"title": "Inception",
"date": "2010",
"countryOfOrigin": "USA",
"director": "Christopher Nolan",
"screenwriter": "Christopher Nolan"

},
{

"id": 4,
"title": "The Prestige",
"date": "2006",
"countryOfOrigin": "USA",
"director": "Christopher Nolan",
"screenwriter": ["Christopher Nolan",

"Jonathan Nolan"]
}

]
}

Listing 2: XML films file
<films >

<film id="1">
<name >Dunkirk </name >
<year >2017 </year >

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 6/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

<country >USA </country >
<director >Christopher Nolan </director >
<screenwriters >

<screenwriter >Christopher Nolan </ screenwriter >
</screenwriters >

</film >
<film id="2">

<name >Interstellar </name >
<year >2014 </year >
<country >USA </country >
<director >Christopher Nolan </director >
<screenwriters >

<screenwriter >Christopher Nolan </ screenwriter >
<screenwriter >Jonathan Nolan </ screenwriter >

</screenwriters >
</film >

</films >

Listing 3: RDF output
@prefix : <http:// example.com/> .

:4 :country "USA" ;
:screenwriter "Jonathan Nolan" ,

"Christopher Nolan" ;
:director "Christopher Nolan" ;
:name "The Prestige" ;
:year :2006 .

:3 :country "USA" ;
:screenwriter "Christopher Nolan" ;
:director "Christopher Nolan" ;
:name "Inception" ;
:year :2010 .

:2 :country "USA" ;
:screenwriter "Jonathan Nolan" ,

"Christopher Nolan" ;
:director "Christopher Nolan" ;
:name "Interstellar" ;
:year :2014 .

:1 :country "USA" ;
:screenwriter "Christopher Nolan" ;
:director "Christopher Nolan" ;
:name "Dunkirk" ;
:year :2017 .

YARRRML

Listing 4: YARRRML transformation script for the films example
prefixes:

ex: "http:// example.com/"

mappings:
films_json:

sources:
- [’films.json~jsonpath ’, ’$.films [*]’]

s: ex:$(id)
po:

- [ex:name , $(title)]

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

- [ex:year , ex:$(date)~iri]
- [ex:director , $(director)]
- [ex:screenwriter , $(screenwriter)]
- [ex:country , $(countryOfOrigin)]

films_xml:
sources:

- [’films.xml~xpath’, ’//film’]
s: ex:$(@id)
po:

- [ex:name , $(name)]
- [ex:year , ex:$(year)~iri]
- [ex:director , $(director)]
- [ex:screenwriter , $(screenwriters/screenwriter)]
- [ex:country , $(country)]

YARRRML is designed with human-readability in mind which is achieved through a
YAML based syntax. Listing 4 shows the mappings films_json and films_xml for our
films example. Each mapping starts with a source definition that contains the query to
be used as iterator, e.g., //film. It is followed by the definition of the output given by
a subject definition (s:) and a number of associated predicate-object definitions (po:).
Subject and predicate-object definitions can use ‘‘partial’’ queries relative to the iterator
to populate the subject and object values. This way of defining mappings is very close to
RML; YARRRML actually does not provide an execution engine but is translated to RML.

SPARQL-Generate

Listing 5: SPARQL-Generate transformation script for the films example
BASE <http:// example.com/>
PREFIX iter: <http://w3id.org/sparql -generate/iter/>
PREFIX fun: <http://w3id.org/sparql -generate/fn/>
PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
PREFIX xsd: <http://www.w3.org /2001/ XMLSchema#>
PREFIX : <http:// example.com/>
PREFIX dbr: <http:// dbpedia.org/resource/>
PREFIX schema: <http:// schema.org/>
PREFIX sc: <http://purl.org/science/owl/sciencecommons/>

GENERATE {
?id_json :name ?name_json ;

:year ?year_json ;
:director ?director_json ;
:country ?country_json .

GENERATE {
?id_json :screenwriter ?screenwriter_json .

}
ITERATOR iter:Split (? screenwriters_json , ",")

AS ?screenwriters_json_iterator
WHERE {

BIND(REPLACE (? screenwriters_json_iterator ,
"\\[|\\]|\"", "")

AS ?screenwriter_json)
} .

?id_xml :name ?name_xml ;
:year ?year_xml ;
:director ?director_xml ;
:country ?country_xml .

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 8/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

GENERATE {
?id_xml :screenwriter ?screenwriter_xml .

}
ITERATOR iter:XPath (?film_xml ,

"/film/screenwriters [*]/ screenwriter")
AS ?screenwriters_xml_iterator

WHERE {
BIND(fun:XPath (? screenwriters_xml_iterator ,
"/screenwriter/text()") AS ?screenwriter_xml)

} .

}
ITERATOR iter:JSONPath(

<https: //raw.githubusercontent.com/herminiogg/ShExML/
master/src/test/resources/filmsPaper.json >,
"$.films [*]") AS ?film_json

ITERATOR iter:XPath(
<https: //raw.githubusercontent.com/herminiogg/ShExML/
master/src/test/resources/filmsPaper.xml >,
"//film") AS ?film_xml

WHERE {
BIND(IRI(CONCAT("http:// example.com/",

STR(fun:JSONPath (?film_json ,"$.id")))) AS ?id_json)
BIND(fun:JSONPath (?film_json , "$.title") AS ?name_json)
BIND(fun:JSONPath (?film_json , "$.director")

AS ?director_json)
BIND(IRI(CONCAT("http:// example.com/",

fun:JSONPath (?film_json , "$.date"))) AS ?year_json)
BIND(fun:JSONPath (?film_json , "$.countryOfOrigin")

AS ?country_json)
BIND(fun:JSONPath (?film_json , "$.director")

AS ?directors_json)
BIND(fun:JSONPath (?film_json , "$.screenwriter")

AS ?screenwriters_json)
BIND(IRI(CONCAT("http:// example.com/",

fun:XPath (?film_xml ,"/film/@id"))) AS ?id_xml)
BIND(fun:XPath (?film_xml , "/film/name/text()")

AS ?name_xml)
BIND(fun:XPath (?film_xml , "/film/director/text()")

AS ?director_xml)
BIND(IRI(CONCAT("http:// example.com/",

fun:XPath (?film_xml , "/film/year/text()")))
AS ?year_xml)

BIND(fun:XPath (?film_xml , "/film/country/text()")
AS ?country_xml)

}

SPARQL-Generate is an extension of SPARQL 1.1 for querying heterogeneous data
sources and creating RDF and text. It offers a set of SPARQL binding functions and
SPARQL iterator functions to achieve this goal. The mapping for our films example is
shown in Listing 5. The output of the mapping is given within the GENERATE clauses and
can use variables and IRIs, while queries, IRI and variable declarations are declared in the
WHERE clause. SPARQL-Generate is an expressive language that can be further extended
using the SPARQL 1.1 extension system. On the other side, SPARQL-Generate scripts tend
to be verbose compared to the other two languages studied in this paper.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

ShExML

Listing 6: ShExML transformation script for the films example
PREFIX : <http:// example.com/>
SOURCE films_xml_file <

https: //raw.githubusercontent.com/herminiogg/
ShExML/master/src/test/resources/filmsPaper.xml >

SOURCE films_json_file <
https: //raw.githubusercontent.com/herminiogg/
ShExML/master/src/test/resources/filmsPaper.json >

ITERATOR film_xml <xpath: //film > {
FIELD id <@id >
FIELD name <name >
FIELD year <year >
FIELD country <country >
FIELD director <director >
FIELD screenwriters <screenwriters/screenwriter >

}
ITERATOR film_json <jsonpath: $.films[*]> {

FIELD id <id>
FIELD name <title >
FIELD year <date >
FIELD country <countryOfOrigin >
FIELD director <director >
FIELD screenwriters <screenwriter >

}
EXPRESSION films <films_xml_file.film_xml

UNION films_json_file.film_json >

:Films :[films.id] {
:name [films.name] ;
:year :[films.year] ;
:country [films.country] ;
:director [films.director] ;
:screenwriter [films.screenwriters] ;

}

ShExML, our proposed language, can be used to map XML and JSON documents to
RDF. The ShExML mapping for the films example is presented in Listing 6. It consists
of source definitions followed by iterator definitions. The latter define structured objects
which fields are populated with the results of source queries. The output of the mapping is
described using a Shape Expression (ShEx) (Prud’hommeaux, Labra Gayo & Solbrig, 2014;
Boneva, Labra Gayo & Prud’hommeaux, 2017) which can refer to the previously defined
fields. The originality of ShExML, compared to the other two languages studied here, is
that the output is defined only once even when several sources are used. This is a design
choice that allows the user to separate concerns: how to structure the output on the one
hand, and how to extract the data on the other hand.

Comparing languages features
In this subsection we compare languages features and what operations are supported or
not in each language (see Table 1).

Iterators, sources, fields, unions and so on are common to the three languages as they
have the same objective. They have different syntaxes, as it can be seen in the three examples,
but from a functionality point of view there are no differences.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 10/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

Table 1 Features comparison between the three languages.

Features ShExML YARRRML SPARQL-Generate

Source and output
definition

Defining output Shape expression Subject and predicate-object
definitions

Generate clause

IRIs generation Prefix and value generation
expression (concatenation)

Prefix and value generation
expression (array)

Variable (previous use of con-
cat function) or string inter-
polation

Datatypes & Lan-
guage tags

Yes Yes Yes

Multiple results from
a query

Treated like an array Treated like an array Need to iterate over the re-
sults

Transformations Limited (Matchers and String
operators).

FnO hub Functions for strings and ex-
tension mechanism

Output formats Output RDF RDF RDF and any text-based for-
mat

Translation RML RML No translation offered
Link betweenmap-
pings

Shape Linking and JOIN
keyword (do not fully cover
YARRRML feature)

Yes (conditions allowed) Nested generate clauses, filter
clauses and extension mecha-
nism

Conditional map-
ping generation

No Yes (Function and conditional
clause)

Yes (Filter clause and exten-
sion mechanism)

Source and output definition and their artefacts: As we saw, the mechanism to define
the form of the RDF output has different flavour in the three languages: subject and
predicate-object definitions for every source in YARRRML; GENERATE clauses for every
source in SPARQL-Generate; a single Shape Expression in ShExML. Additionally, the
three languages offer slightly different operators for constructing the output values. All
of them typically obtain IRIs by concatenating a source value to some prefix, and reuse
literal values as is. YARRRML supports the generation of multiple named graphs whereas
SPARQL-Generate can only generate one named graph at a time and ShExML only
generates RDF datasets.

Multiple results: The handling of multiple results, like it occurs on the screenwriters
case, is different between SPARQL-Generate and the two other languages. In YARRRML
and ShExML if a query returns multiple results they are treated like a list of them. However,
in SPARQL-Generate this functionality must be explicitly declared like it can be seen in
Listing 5. It leads to complex iterator definitions like the one used in JSON screenwriters
one.

Transformations: The possibility of transforming the output to another value by means
of a function is something very useful for different purposes when building a knowledge
graph. Therefore, in YARRRML this is supported through the FnO mechanism (Meester et
al., 2017) which offers a way to define functions inside mapping languages in a declarative
fashion. SPARQL-Generate offers some functions for strings embedded inside the SPARQL
binding functions mechanism; however, it is possible to extend the language through the
SPARQL 1.1 extension mechanism. In the case of ShExML, only Matchers and String
operations are offered for transformation purposes.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 11/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

Other formats output: Output format on YARRRML and ShExML is limited to RDF;
whereas, in SPARQL-Generate it is possible to also generate plain text, enabling the
potential transformation to a lot of different formats. In this aspect, SPARQL-Generate
presents a much more flexible output. Converserly, YARRRML and ShExML engines offer
a translation of their mappings to RML rules which improves interoperability with other
solutions.

Link to other mappings: In YARRRML there is the possibility to link mappings between
them. This functionality is provided by giving the name of the mapping to be linked and
the condition that must be satisfied (e.g., ID of mapping A equal to ID of mapping B).
This can be useful when the subject is generated with a certain attribute but this attribute
does not appear on the other file so the linking should be done using another attribute. In
ShExML this can be partially achieved by Shape linking—which is a syntactic sugar to avoid
repeating an expression twice—and by the Join clause which gives an implementation for
primary interlinking covering a subset of what is covered with YARRRMLmapping linking.
In SPARQL-Generate this can be achieved using nested Generate clauses and Filter clauses.

Conditional mapping generation: Sometimes there is the need to generate triples
only in the case that some condition is fulfilled. In YARRRML this is achieved using
the conditional clause and a function. In SPARQL-Generate this can be obtained with
the SPARQL 1.1 Filter clauses and also with the extensibility mechanism offered by the
language. In ShExML this is not possible currently.

Further features of SPARQL-Generate: Apart from what has been presented in
the previous point, SPARQL-Generate, as being based on SPARQL 1.1, offers more
expressiveness than the other two languages. One possibility that emerges from that is the
use of defined variables. For example, it is possible to define an iterator of numbers and
then use that numbers to request different parts of an API. This versatility enables the
creation of very complex and rich scripts that can cover a lot of use cases. It is natural to
expect that learning to use the full capabilities of SPARQL-Generate is complex, as the
language offers a lot of features. In our experiments, however, only some basic features of
the language were required and, as is shown in ‘Results’, it appears that SPARQL-Generate
design did not help test subjects to solve the proposed tasks easily.

METHODOLOGY
In order to test our hypothesis that ShExML is easier for first-time users only experienced in
programming and the basics of linked data, an experiment was carried out. The University
of Oviedo granted ethical approval to carry out the described study. Verbal consent was
requested before starting the experiment.

Experiment design
The selected tools were YARRRML (http://rml.io/yarrrml/), SPARQL-Generate (https://ci.
mines-stetienne.fr/sparql-generate/) and ShExML (http://shexml.herminiogarcia.com/).
We decided not to include RML (http://rml.io/) and similar alternatives for the same reason
mentioned on ‘Presentation of the Languages Under Study’. Three manuals were designed
for the students based on the example about films that described how the integration can be

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 12/27

https://peerj.com
http://rml.io/yarrrml/
https://ci.mines-stetienne.fr/sparql-generate/
https://ci.mines-stetienne.fr/sparql-generate/
http://shexml.herminiogarcia.com/
http://rml.io/
http://dx.doi.org/10.7717/peerj-cs.318

2Material can be consulted on: https:
//github.com/herminiogg/shexml-paper-
2019-data/tree/master/experiment-
material.

done with each tool.2 The experiment was designed to be performed in each tool dedicated
online environment, which are available through the Internet as a webpage.

In addition, a small manual was developed to guide the students along the experiment
and to inform them about the input files and which are the expected outputs2. This
manual contained two tasks to perform during the experiment which were designed to
be performed sequentially, i.e., the student should finish the first task before starting with
the second one. The first task was the mapping and integration of two files (JSON and
XML) with information about books which should be mapped in a unique RDF graph. The
final output should be equal to the one given in the guide. The second task was to modify
the script done in the previous task so that the prices are separated and can be compared
between markets. In other words, that multiple prices are tagged individually referring to
the market where the specific price was found, like they were in the input files. This second
task gives us an intuition on how easy is to modify an existing set of data mapping rules in
each language.

The study was designed as a mixed method approach, including a quantitative
analysis and a qualitative analysis. For the quantitative analysis measures, Mousotron
(http://www.blacksunsoftware.com/mousotron.html) was used which allows to register
the number of keystrokes, the distance travelled by the mouse and so on. For the qualitative
analysis twoOffice 365 formswere usedwith questions based on a Likert scale (see questions
in Table 2). In addition, the elapsed time was calculated from timestamps in the Office 365
forms.

Conduction
The sample consisted on 20 students (four women and 13 men) of the MSc in
Web Engineering first-year course (out of two years) at the University of Oviedo
(http://miw.uniovi.es/). Most of them have a bachelor degree (240 ECTS credits) in
computer science or similar fields. They were receiving a semantic web course of two
weeks—a total of 30 hours (3 hours per day)—where they were introduced to semantic
technologies like: RDF, SPARQL, ShEx, etc. Before this course they had not previous
knowledge on semantic web technologies. Regarding prior knowledge of YAML by subjects,
even though it is normally known and used by developers, we could not assure it. The
experiment was hosted the final day of the course.

The experiment was conducted in their usual classroom and with their whole-year-
assigned computers. So that they were in a confortable environment and with a computer
they are familiar with. The three tools were assigned to the students in a random manner.
Each student received the printed manual for its assigned tool and they were given a time
of 20 minutes to read it, test the language in the online environment, and ask doubts and
questions. Once these 20 minutes were elapsed the printed experiment guide was given to
the students and they were explained about the experiment proceeding with indications
about Mousotron operation.

In particular the procedure followed to perform the whole experiment was:
1. Open the assigned tool on the dedicated webpage and clear the given example.
2. Open Mousotron and reset it.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 13/27

https://github.com/herminiogg/shexml-paper-2019-data/tree/master/experiment-material
https://github.com/herminiogg/shexml-paper-2019-data/tree/master/experiment-material
https://github.com/herminiogg/shexml-paper-2019-data/tree/master/experiment-material
https://github.com/herminiogg/shexml-paper-2019-data/tree/master/experiment-material
https://peerj.com
http://www.blacksunsoftware.com/mousotron.html
http://miw.uniovi.es/
http://dx.doi.org/10.7717/peerj-cs.318

Table 2 Statements to evaluate by the students based on a 5 point Likert scale.

Questionnaire Statement Obtained Variable

1 The experience with the tool was satisfactory General satisfaction level
1 The tool was easy to use Easiness of use
1 The mapping definitions was easy Mapping definition easiness
1 The language was easy to learn Learnability
1 I find that these tool can be useful in my work Applicability
1 The coding in this tool was intuitive Intuitiveness
1 The language design leads to commit some errors Error proneness
1 The error messages were useful to solve the problems Error reporting usefulness
2 It was easy to define different predicates for the price Modifiability

3. Proceed with task 1 (start time registered for elapsed time calculation).
4. Once task 1 is finished, capture Mousotron results (screenshot) and fill the first Office

365 questionnaire.
5. Reset Mousotron and proceed with task 2.
6. Once task 2 is finished, capture Mousotron results (screenshot) and fill the second

Office 365 questionnaire.

Analysis
The quantitative results were dump into an Excel sheet and anonymised. Although many
results can be used as given by the students, some of them need to be calculated. This is
the case of elapsed time (on both tasks), completeness percentage and precision. Elapsed
time in the first task (tt1) was calculated as the subtraction of questionnaire 1 beginning
time (st q1) and experiment start time (st e), i.e., (tt1 = st q1− st e). Elapsed time in the
second task (tt2) was calculated as the subtraction of questionnaire 1 ending time (et q1)
and questionnaire 2 beginning time (st q2), i.e., (tt2= st q2−et q1).

Completeness percentagewas calculated from threemeasures: the proportion of correctly
generated triples contributed 50%, the proportion of data correctly translated contributed
25% and the proportion of correctly generated prefixes and datatypes as a 25%. This design
gives more importance to the structure, which is the main goal when using these tools.
Other aspects, like correct data (i.e., the object part of a triple), prefixes (i.e., using the
correct predicate for the subject, the predicate and the object in case of an IRI) and the
datatype (i.e., putting the correct xsd type in case of a literal object) are a little less valued
as these errors could come more easily from a distraction or an oversight. Let CP be the
completeness percentage, t the number of triples, d the number of data gaps and p&dt the
number of prefixes and datatypes, so the calculation of the completeness percentage can
be expressed as:

CP = 0.5∗
ttotal− tgenerated

ttotal
+0.25∗

dtotal−dgenerated
dtotal

+0.25∗
p&dttotal−p&dtgenerated

p&dttotal
.

Finally, precision was calculated as the division of current student elapsed time by
minimum elapsed time of all students, multiplied by the completeness percentage. This
precision formulation gives us an intuition on how fast was some student in comparison

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

with the fastest student and with a correction depending on how well his/her solution was.
Let tsn be the elapsed time of student n and CP sn the completeness percentage of student n
calculated with the previous formula.

Precisionsn=
tsn

min({ts1,...,tsn})
∗CPsn.

The results of the qualitative analysis were only anonymised as they can be directly used
from the Office 365 output.

For the analysis the IBM SPSS version 24 was used. We planned a OneWay ANOVA test
within the three groups in the quantitative analysis where a normal distribution was found
and the Kruskal-Wallis test where not. The qualitative analysis comparison between three
groups was established using the Kruskal-Wallis test. The report and analysis of the results
was made using Field (2013) as guidance and using the suggested APA style as a standard
manner to report statistical results.

Threat to validity
In this experiment we have identified the following threats to its validity.

Internal validity
We have identified the following internal validity threats in the experiment design:

• More expertise in some specific tool: In semantic web area—as in other areas—people
tend to be more expert in some specific technologies and languages. The derived risk is
that this expertise can have an influence on final results. To alleviate this we have selected
MSc students that are studying the same introductory semantic web course and we have
assigned the tools in a random manner.
• Not homogeneous group: It is possible that the selected group is not homogeneous
on skills and previous knowledge. To mitigate this we have applied the same measures
as for the previous threat: Students of a semantic web course and a randomised tool
assignment.
• Unfamiliar environment: In usability studies, unfamiliar environments can play a
role on final conclusions. Therefore, we opted to run the experiment in a well-known
environment for the students, that is, their whole-year classroom.
• More guide and information about one tool: As we have designed one of the languages,
it could lead to a bias in information delivery. To try to mitigate this threat we developed
three identical manuals for each tool. Questions and doubts were answered equally for
all the students and tools.

External validity
Following themeasures taken in the internal validity threats we identified the corresponding
external validity ones:

• Very focused sample: As we have restricted the profile of the sample to students of a
MSc course which are more or less within the same knowledge level, there is the risk that
these findings cannot be extrapolated for other samples or populations. It is possible that
for semantic web practitioners—with different interests and expertises—these findings

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 15/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

3Original datasets available on: https:
//github.com/herminiogg/shexml-paper-
2019-data/tree/master/datasets.

are not applicable. However, the intention of this study was to evaluate usability with
first-time users as a first step to guide future studies.

RESULTS
From the 20 students of the sample,3 in the first task, three of them left the experiment
without making any questionnaire, two for SPARQL-Generate and one for YARRRML. In
the second task, only seven out of the 20 students made the questionnaire, six for ShExML
and 1 for YARRRML. The statistical analysis was made using the IBM SPSS software,
version 24.

Task 1:As previously stated, the number of students that finished—correctly or not—the
proposed task was 17. Descriptive statistics can be seen in Table 3. Comparison of three
groups was made by means of a One Way ANOVA which results showed significant
differences on elapsed seconds F(2,14)= 6.00, p= .013, ω = .60. As completeness
percentage and precision are not following a normal distribution on SPARQL-Generate
group (W (4)= .63, p= .001 and W (4)= .63, p= .001), the comparison was established
by means of the Kruskal-Wallis test which showed significant differences in both variables
(H (2)= 9.73, p= .008 and H (2)= 9.68, p= .008). Post hoc test for elapsed seconds
using the Gabriel’s criterion showed significant differences between ShExML group and
YARRRML group (p= .016). Post hoc test for completeness percentage and precision using
the Bonferroni’s criterion showed significant differences between ShExML and SPARQL-
Generate (p= .012, r = .87 and p= .012, r = .87). Likert scale questionnaire results
(α= 0,73) (see Fig. 1) were analysed using Kruskal-Wallis test which resulted in significant
differences between groups for variables general satisfaction level (H (2)= 6.28, p= .043),
easiness of use (H (2)= 9.82, p= .007), mapping definition easiness (H (2)= 10.25,
p= .006) and learnability (H (2)= 8.63, p= .013). Bonferroni’s criterion was used as
post hoc test for the variables with significant differences. For general satisfaction level
significant differences were found between ShExML and YARRRML (p= .039, r = .69).
For easiness of use significant differences were found between ShExML and YARRRML
(p= .011, r = .81). For mapping definition easiness significant differences were found
between ShExML and SPARQL-Generate (p= .013, r = .90) and between ShExML and
YARRRML (p= .037, r = .69). For learnability significant differences were found between
ShExML and SPARQL-Generate (p= .042, r = .78) and between ShExML and YARRRML
(p= .040, r = .69).

Task 2: In this task only seven students reached this step: 6 for ShExML and 1 for
YARRRML. Descriptive statistics of this task can be seen in Table 4. No significant
differences were found in any of the variables. In subjective variable analysis (see Fig. 2) no
significant differences were found.

DISCUSSION
Statistical results discussion
Results of task 1 show that variables like keystrokes, left button clicks, right button
clicks, mouse wheel scroll and meters travelled by the mouse, do not have a significant

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 16/27

https://github.com/herminiogg/shexml-paper-2019-data/tree/master/datasets
https://github.com/herminiogg/shexml-paper-2019-data/tree/master/datasets
https://github.com/herminiogg/shexml-paper-2019-data/tree/master/datasets
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

Table 3 Descriptive statistics for task 1 objective results where n is the sample size, x̄ is the mean, s is the standard deviation,max is the maxi-
mum value of the sample andmin is the minimum value of the sample. (*) means significant differences between groups and (a) means significant
differences in the post hoc test between the marked groups at the level of significance (α = .05). Differences in totals are due to malfunctions while
operating capture software.

Measure Group n x̄ s max min

Elapsed seconds (*) ShExML (a) 7 1,560.1429 541.57376 2,192 782
YARRRML (a) 6 2,443.8333 375.44502 2,896 1,891
SPARQL-Generate 4 2,292.7500 533.49063 2,769 1,634
Total 17 2,044.4118 620.68370 2,896 782

Keystrokes ShExML 6 1,138.50 610.588 2,287 674
YARRRML 4 1,187 449.649 1,795 810
SPARQL-Generate 3 1,125.67 121.476 1,265 1,042
Total 13 1,150.46 457.183 2,287 674

Left button clicks ShExML 6 176.50 112.169 327 58
YARRRML 4 318.75 177.989 551 170
SPARQL-Generate 3 166 78.791 254 102
Total 13 217.85 138.267 551 58

Right button clicks ShExML 6 2.17 2.137 6 0
YARRRML 4 2.25 1.708 4 0
SPARQL-Generate 2 4.50 2.121 6 3
Total 12 2.58 2.021 6 0

Mouse wheel scroll ShExML 6 148 183.737 486 13
YARRRML 4 679.25 606.711 1,404 101
SPARQL-Generate 3 199 131.160 348 101
Total 13 323.23 412.819 1,404 13

Meters travelled by the mouse ShExML 7 30.400 24.318 70.079 0
YARRRML 6 43.454 43.144 101.767 0
SPARQL-Generate 4 21.220 16.526 37.680 0
Total 17 32.847 30.550 101.767 0

Completeness percentage (*) ShExML (a) 7 0.771 0.296 1 0.19
YARRRML 6 0.323 0.366 0.82 0
SPARQL-Generate (a) 4 0.02 0.04 0.08 0
Total 17 0.436 0.415 1 0

Precision (*) ShExML (a) 7 0.495 0.286 1 0.07
YARRRML 6 0.131 0.160 0.38 0
SPARQL-Generate (a) 4 0.005 0.01 0.02 0
Total 17 0.251 0.292 1 0

variability depending on the used tool. This suggests that web interfaces used as online
development environments are more or less homogeneous and do not have an impact on
the development of the scripts. However, keystrokes variable results should be considered
with caution because for SPARQL-Generate the mean of completeness percentages was
very low; therefore, achieving a final solution may involve more keystrokes. On the other
hand, elapsed seconds, completeness percentage and precision show significant differences
between groups which suggest that the selected language has an influence on these variables.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 17/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

(a)

(a)

(*)

(*)

(*)

(*)

(a)

(a)

(a)

(a)

(a)

(a)

(b)
(b)

(b)
(b)

-

-

-

-

-

-

-

-

Figure 1 Task 1 results for Likert scale questionnaire where results are divided into questions and
groups. (*) means significant differences between groups and (a) and (b) means significant differences in
the post hoc test between the marked groups at the level of significance α= .05.

Full-size DOI: 10.7717/peerjcs.318/fig-1

Moreover, we can see that elapsed seconds has a medium size effect (ω= .60). Post hoc
results show that there are significant differences between ShExML and YARRRML
which suggests that YARRRML users tend to need more time than ShExML users for
these tests. In the case of comparisons with SPARQL-Generate there are not significant
differences which can be due to the small sample size and the low completeness percentage.
Differences between ShExML and SPARQL-Generate for completeness percentage and
precision suggest that SPARQL-Generate users were not able to achieve working solutions
as ShExML users, which have the highest mean on both variables. However, between
ShExML and YARRRML groups there were no significant differences which is in line with
the great variability of those two variables.

Results of task 2 do not show any significant difference between the ShExML group
and the YARRRML group. This can be explained by the low sample size in the YARRRML
group where only one individual made this step. However, completeness percentage and
precision show us that some students did achieve a correct solution with ShExML, whereas
in YARRRML group and in SPARQL-Generate group they did not. This leads to the
conclusion that only the ShExML group managed to find a working solution to both

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 18/27

https://peerj.com
https://doi.org/10.7717/peerjcs.318/fig-1
http://dx.doi.org/10.7717/peerj-cs.318

Table 4 Descriptive statistics for task 2 objective results where n is the sample size, x̄ is the mean, s is
the standard deviation,max is the maximum value of the sample andmin is the minimum value of the
sample. Differences in totals are due to malfunctions while operating capture software.

Measure Group n x̄ s max min

Elapsed seconds ShExML 6 325.5 328.9248 879 3
YARRRML 1 47 0 47 47
Total 7 285.7143 318.1822 879 3

Keystrokes ShExML 5 206.40 175.832 438 43
YARRRML 1 91 0 91 91
Total 6 187.17 164.174 438 43

Left button clicks ShExML 5 61.80 81.417 207 16
YARRRML 1 43 0 43 43
Total 6 58.67 73.225 207 16

Right button clicks ShExML 5 0.40 0.548 1 0
YARRRML 1 0 0 0 0
Total 6 0.33 0.516 1 0

Mouse wheel scroll ShExML 5 123.80 129.494 288 0
YARRRML 1 41 0 41 41
Total 6 110 120.655 288 0

Meters travelled by the mouse ShExML 6 9.7629 13.8829 37.7565 0
YARRRML 1 11.7563 0 11.7563 11.7563
Total 7 10.0477 12.6957 37.7565 0

Completeness percentage ShExML 6 0.73 0.3904 1 0
YARRRML 1 0 0 0 0
Total 7 0.6257 0.4507 1 0

Precision ShExML 6 0.4683 0.37467 1 0
YARRRML 1 0 0 0 0
Total 7 0.4014 0.38512 1 0

proposed tasks. Nevertheless, these conclusions must be validated with bigger experiments
to have statistical confidence.

The differences in completeness percentage and precision between ShExML and
SPARQL-Generate and also between ShExML and YARRRML in elapsed seconds can
lead us to the conclusion that usability on first-time users is improved by using ShExML
over the other two languages, which answers RQ1. Moreover, this conclusion is reinforced
by the situation that in task 2 neither YARRRML nor SPARQL-Generate users were able
to find a solution to this task.

Regarding the subjective analysis, significant differences were found between groups in
general satisfaction level, mapping definition easiness easiness of use and learnability (as
perceived by the students).

On general satisfaction level significant differences were found between ShExML and
YARRRML which indicates that ShExML users were more satisfied with the overall use of
the tool respect to the YARRRML users. Differences between SPARQL-Generate users and
the two other groups could not be established due to their low completeness percentage
and precision rates.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

Figure 2 Task 2 results for Likert scale questionnaire where results are divided into the two groups.
Full-size DOI: 10.7717/peerjcs.318/fig-2

In the case of easiness of use significant differences were found between ShExML and
YARRRML which suggests that ShExML users found this language easier to use than
YARRRML users did with their language counterpart. In this case, like in the previous
variable, significant differences could not be established between SPARQL-Generate and
the two other groups due to low completeness percentage.

In mapping definition easiness differences were established between ShExML group
and YARRRML group and between ShExML group and SPARQL-Generate group which
indicates that ShExML users found mappings easier to define in ShExML than in the other
two languages. We also note that users did not find differences on mapping definition
easiness between YARRRML and SPARQL-Generate, this may be because SPARQL-
Generate users did not use the whole language.

On learnability significant differences were found between ShExML and SPARQL-
Generate and between ShExML and YARRRML which suggests that the users found
easier to learn ShExML than the other two languages. However, no significant differences
were found between YARRRML and SPARQL-Generate which seems strange due to the
difference of verbosity between the two languages.

Differences on subjective analysis between ShExML and YARRRML on general
satisfaction level, mapping definition easiness, easiness of use and learnability, and between
ShExML and SPARQL-Generate on mapping definition easiness and learnability comes to
corroborate what we have elucidated with the objective analysis answering RQ1.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 20/27

https://peerj.com
https://doi.org/10.7717/peerjcs.318/fig-2
http://dx.doi.org/10.7717/peerj-cs.318

Review of the other variables shows that the users do not see much applicability on the
three languages, that the design of the languages leads users to commit some errors during
the development of the script and that the error reporting system in the three of them is
not very useful to solve the incoming problems.

The feedback received from the users in the error proneness and error reporting
usefulness variables determines that these two aspects are the ones that should be improved
in the three languages to improve their usability. This comes to answer the RQ3.

For the modifiability variable assessed in task 2, ShExML users tend to rate this feature
with high marks whereas the single YARRRML user gave a response of 3 in a 5 point Likert
scale which is in line with his/her completeness percentage mark. As with the objective
results of task 2, these subjective results should be further validated in future bigger
experiments to corroborate these early findings.

Alignment with features comparison
In the light of the statistical analysis outcome, SPARQL-Generate design has been shown
to have a negative impact on first-time users. This led to three users abandoning the task
and low completeness scores for the rest of the group. Although having more features in
a language is something good and desirable, these results caught attention on how these
features should be carefully designed and included in the language in order to improve
easiness of use, and thus overall adoption of the tool. In the case of YARRRML language,
although it has been designed with human-friendliness in mind, in our experiment it
has not reached the expected results in comparison with ShExML. However, it has better
results than SPARQL-Generate, suggesting it is less complex to use than that language,
but still more complex than ShExML. Nevertheless, it does not seem that supported
features could explain the differences between YARRRML and ShExML as the features
used on the experiment are more or less equal. Instead other syntax details may be affecting
the differences between these two groups such as: the use of keywords that made the
language more self explanatory and the modularity used on iterators which reminds of
object-oriented programming languages. However, this would require a broader study
taking into account programming style background of participants and their own style
preferences using techniques like a cognitive complexity architecture (Hansen, Lumsdaine
& Goldstone, 2012) to identify how each feature and its design is affecting the usability of
each specific language.

These results highlight the importance on how features are designed and included in
a language. Therefore, SPARQL-Generate with more features and being a highly flexible
language tends to have a bad influence on users’ usability. Comparing ShExML and
YARRRML we see that these differences are smaller than with SPARQL-Generate and that
features support does not seem to be the variable affecting YARRRML usability. Thus, we
can conclude—and answer the RQ2—that it is not the features supported by a language
which affects usability of first-time users but their design.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 21/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

CONCLUSIONS AND FUTURE WORK
In thisworkwehave compared the usability of three heterogeneous datamapping languages.
The findings of our user study were that better results, and speed on finding this solution,
are related to ShExML users whereas SPARQL-Generate users were not able to find any
solution under study conditions. In the case of YARRRML users, they performed better
than SPARQL-Generate users but worse than ShExML users finding partial solutions to
the given problem.

This study is (to our knowledge) the first to explore the topic of usability for first-time
users with programming and Linked Data background in these kind of languages. It also
reflects the importance that usability has on the accuracy of the encountered solutions and
how features should be carefully designed in a language to not impact negatively on its
usability.

As future work, bigger experiments should be carried out with an emphasis on
programming style background and styles (using cognitive complexity frameworks) to
corroborate and expand these early findings. In addition, improving these aspects that
were worst rated in the three languages (i.e., error proneness and the error reporting
system) would enhance perceived user friendliness.

This work highlights the importance of usability on these kind of languages and how it
could affect their adoption.

ACKNOWLEDGEMENTS
We want to thank the students of the Master’s Degree in Web Engineering for their
willingness to participate in the experiment described in this work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work has been funded by the Principality of Asturias through the Severo Ochoa
call (grant BP17-29), by the Ministry of Economy, Industry and Competitiveness under
the call of ‘‘Programa Estatal de I+D+i Orientada a los Retos de la Sociedad’’ (project
TIN2017-88877-R), the CPER Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015–2020, and the ANR project DataCert ANR-15-CE39-0009. There
was no additional external funding received for this study. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Principality of Asturias through the Severo Ochoa call: BP17-29.
Ministry of Economy, Industry and Competitiveness under the call of ‘‘Programa Estatal
de I+D+i Orientada a los Retos de la Sociedad’’: TIN2017-88877-R.
The CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies
2015-2020.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 22/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.318

The ANR project DataCert: ANR-15-CE39-0009.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Herminio García-González conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Iovka Boneva conceived and designed the experiments, analyzed the data, performed
the computation work, prepared figures and/or tables, authored or reviewed drafts of
the paper, and approved the final draft.
• Sławek Staworko and Juan Manuel Cueva Lovelle performed the computation work,
authored or reviewed drafts of the paper, and approved the final draft.
• José Emilio Labra-Gayo conceived and designed the experiments, performed the
experiments, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The University of Oviedo granted ethical approval to carry out the described study.

Data Availability
The following information was supplied regarding data availability:

Experiment data, supplemental material and raw data are available at GitHub:
https://github.com/herminiogg/shexml-paper-2019-data.

REFERENCES
Auer S, Dietzold S, Lehmann J, Hellmann S, Aumueller D. 2009. Triplify: light-

weight linked data publication from relational databases. In: Proceedings of the 18th
international conference on World Wide Web, WWW 2009, Madrid, Spain, April 20–
24, 2009. 621–630 DOI 10.1145/1526709.1526793.

Battle S. 2004. Round-tripping between XML and RDF. In: International semantic web
conference (ISWC), Hiroshima, Japan.

Battle S. 2006. Gloze: XML to RDF and back again. In: Proceedings of the first Jena user
conference.

Berners-Lee T, Hendler J, Lassila O. 2001. The semantic web. Scientific American
284(5):28–37.

Bischof S, Decker S, Krennwallner T, Lopes N, Polleres A. 2012.Mapping be-
tween RDF and XML with XSPARQL. Journal on Data Semantics 1(3):147–185
DOI 10.1007/s13740-012-0008-7.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 23/27

https://peerj.com
https://github.com/herminiogg/shexml-paper-2019-data
http://dx.doi.org/10.1145/1526709.1526793
http://dx.doi.org/10.1007/s13740-012-0008-7
http://dx.doi.org/10.7717/peerj-cs.318

Bizer C, Seaborne A. 2004. D2RQ-treating non-RDF databases as virtual RDF graphs. In:
Proceedings of the 3rd international semantic web conference (ISWC2004), vol. 2004.
Proceedings of ISWC2004.

Boneva I, Labra Gayo JE, Prud’hommeaux EG. 2017. Semantics and validation of shapes
schemas for RDF. In: d’Amato C, Fernandez M, Tamma V, Lecue F, Cudré-Mauroux
P, Sequeda J, Lange C, Heflin J, eds. The semantic web—ISWC 2017. Cham: Springer
International Publishing, 104–120.

Breitling F. 2009. A standard transformation from XML to RDF via XSLT. Astronomische
Nachrichten 330(7):755–760 DOI 10.1002/asna.200811233.

Das S, Sundara S, Cyganiak R. 2012. R2RML: RDB to RDF mapping language. Available
at https://www.w3.org/TR/ r2rml/ .

Deursen DV, Poppe C, Martens G, Mannens E, deWalle RV. 2008. XML to RDF
conversion: a generic approach. In: Automated solutions for cross media content
and multi-channel distribution, 2008. AXMEDIS ’08. International conference on.
Washington, 138–144 DOI 10.1109/AXMEDIS.2008.17.

Dimou A, SandeMV, Colpaert P, Verborgh R, Mannens E, deWalle RV. 2014. RML: a
generic language for integrated rdf mappings of heterogeneous data. In: Proceedings
of the workshop on linked data on the web co-located with the 23rd international world
wide web conference (WWW 2014), Seoul, Korea, April 8, 2014.

Ermilov I, Auer S, Stadler C. 2013. CSV2RDF: User-driven CSV to RDF mass conversion
framework. In: Proceedings of the ISEM, vol. 13. Graz, Austria, 04–06.

Fagin R, Kolaitis PG, Miller RJ, Popa L. 2005. Data exchange: semantics and query an-
swering. Theoretical Computer Science 336(1):89–124 DOI 10.1016/j.tcs.2004.10.033.

Field A. 2013.Discovering statistics using IBM SPSS statistics. Thousand Oaks: Sage.
Fiorelli M, Lorenzetti T, PazienzaMT, Stellato A, Turbati A. 2015. Sheet2RDF: a flexible

and dynamic spreadsheet import&lifting framework for RDF. In: Current approaches
in applied artificial intelligence—28th international conference on industrial, engineer-
ing and other applications of applied intelligent systems, IEA/AIE 2015, Seoul, South
Korea, June 10–12, 2015, proceedings. 131–140 DOI 10.1007/978-3-319-19066-2_13.

Freire F, Freire C, Souza D. 2017. Enhancing JSON to RDF data conversion with
entity type recognition. In: Proceedings of the 13th international conference on web
information systems and technologies, WEBIST 2017, Porto, Portugal, April 25–27,
2017. 97–106 DOI 10.5220/0006302900970106.

García-González H, Fernández-Álvarez D, Gayo JEL. 2018. ShExML: an heterogeneous
data mapping language based on ShEx. In: Proceedings of the EKAW 2018 posters
and demonstrations session co-located with 21st international conference on knowledge
engineering and knowledge management (EKAW 2018), Nancy, France, November 12–
16, 2018. 9–12.

Halevy AY. 2001. Answering queries using views: a survey. The VLDB Journal
10(4):270–294 DOI 10.1007/s007780100054.

Han L, Finin T, Parr CS, Sachs J, Joshi A. 2008. RDF123: from spreadsheets to RDF.
In: The semantic web—ISWC 2008, 7th international semantic web conference,

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 24/27

https://peerj.com
http://dx.doi.org/10.1002/asna.200811233
https://www.w3.org/TR/r2rml/
http://dx.doi.org/10.1109/AXMEDIS.2008.17
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1007/978-3-319-19066-2_13
http://dx.doi.org/10.5220/0006302900970106
http://dx.doi.org/10.1007/s007780100054
http://dx.doi.org/10.7717/peerj-cs.318

ISWC 2008, Karlsruhe, Germany, October 26–30, 2008. Proceedings. 451–466
DOI 10.1007/978-3-540-88564-1_29.

Hanenberg S. 2010. Faith, hope, and love: an essay on software science’s neglect of
human factors. In: Cook WR, Clarke S, Rinard MC, eds. Proceedings of the 25th
annual ACM SIGPLAN conference on object-oriented programming, systems, languages,
and applications, OOPSLA 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM, 933–946.

HansenME, Lumsdaine A, Goldstone RL. 2012. Cognitive architectures: a way forward
for the psychology of programming. In: Leavens GT, Edwards J, eds. ACM sympo-
sium on new ideas in programming and reflections on software, onward! 2012, part of
SPLASH ’12, Tucson, AZ, USA, October 21–26, 2012. ACM, 27–38.

Hert M, Reif G, Gall HC. 2011. A comparison of RDB-to-RDF mapping languages. In:
Proceedings of the 7th international conference on semantic systems. ACM, 25–32.

Heyvaert P, Dimou A, Herregodts A, Verborgh R, Schuurman D, Mannens E, deWalle
RV. 2016. RMLEditor: a graph-based mapping editor for linked data mappings. In:
The semantic web. Latest advances and new domains—13th international conference,
ESWC 2016, Heraklion, Crete, Greece, May 29–June 2, 2016, Proceedings. 709–723
DOI 10.1007/978-3-319-34129-3_43.

Heyvaert P, Meester BD, Dimou A, Verborgh R. 2018. Declarative rules for linked data
generation at your fingertips!. In: The semantic web: ESWC 2018 satellite events—
ESWC 2018 satellite events, Heraklion, Crete, Greece, June 3–7, 2018, Revised Selected
Papers. 213–217 DOI 10.1007/978-3-319-98192-5_40.

Lefrançois M, Zimmermann A, Bakerally N. 2016. Flexible RDF generation from RDF
and heterogeneous data sources with SPARQL-generate. In: Knowledge engineering
and knowledge management—EKAW 2016 satellite events, EKM and Drift-an-
LOD, Bologna, Italy, November 19–23, 2016, Revised Selected Papers. 131–135
DOI 10.1007/978-3-319-58694-6_16.

Lefrançois M, Zimmermann A, Bakerally N. 2017. A SPARQL extension for generating
RDF from heterogeneous formats. In: The semantic web—14th international
conference, ESWC 2017, Portorož, Slovenia, May 28–June 1, 2017, Proceedings, Part
I. 35–50 DOI 10.1007/978-3-319-58068-5_3.

Meester BD, Heyvaert P, Verborgh R, Dimou A. 2019.Mapping languages: analysis of
comparative characteristics. In: Chaves-Fraga D, Heyvaert P, Priyatna F, Sequeda JF,
Dimou A, Jabeen H, Graux D, Sejdiu G, Saleem M, Lehmann J, eds. CEUR workshop
proceedings. Joint proceedings of the 1st international workshop on knowledge graph
building and 1st International Workshop on Large Scale RDF analytics co-located with
16th extended semantic web conference (ESWC 2019), Portorož, Slovenia, June 3, 2019,
vol. 2489. CEUR-WS.org, 37–45.

Meester BD, MaroyW, Dimou A, Verborgh R, Mannens E. 2017. RML and FnO:
shaping DBpedia declaratively. In: The semantic web: ESWC 2017 satellite events—
ESWC 2017 Satellite events, Portorož, Slovenia, May 28–June 1, 2017, Revised Selected
Papers. 172–177 DOI 10.1007/978-3-319-70407-4_32.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 25/27

https://peerj.com
http://dx.doi.org/10.1007/978-3-540-88564-1_29
http://dx.doi.org/10.1007/978-3-319-34129-3_43
http://dx.doi.org/10.1007/978-3-319-98192-5_40
http://dx.doi.org/10.1007/978-3-319-58694-6_16
http://dx.doi.org/10.1007/978-3-319-58068-5_3
http://dx.doi.org/10.1007/978-3-319-70407-4_32
http://dx.doi.org/10.7717/peerj-cs.318

Michel F, Djimenou L, Faron-Zucker C, Montagnat J. 2015. Translation of relational
and non-relational databases into RDF with xR2RML. In: Monfort V, Krempels K,
Majchrzak TA, Turk Z, eds.WEBIST 2015—proceedings of the 11th international
conference on web information systems and technologies, Lisbon, Portugal, 20–22 May,
2015. SciTePress, 443–454.

Michel F, Montagnat J, Zucker CF. 2014. A survey of RDB to RDF translation ap-
proaches and tools. PhD thesis, I3S. Available at https://hal.archives-ouvertes.fr/hal-
00903568/ file/Rapport_Rech_I3S_v2_-_Michel_et_al_2013_-_A_survey_of_RDB_to_
RDF_translation_approaches_and_tools.pdf .

Miletic I, Vujasinovic M, Ivezic N, Marjanovic Z. 2007. Enabling semantic mediation
for business applications: XML-RDF, RDF-XML and XSD-RDFS transformations.
In: Gonçalves RJ, Müller JP, Mertins K, Zelm M, eds. Enterprise interoperability II:
new challenges and approaches. London: Springer, 483–494.

Müller H, Cabral L, Morshed A, Shu Y. 2013. From RESTful to SPARQL: a case study on
generating semantic sensor data. In: Proceedings of the 6th international workshop on
semantic sensor networks co-located with the 12th international semantic web conference
(ISWC 2013), Sydney, Australia, October 22nd, 2013. 51–66.

Prud’hommeaux E, Labra Gayo JE, Solbrig H. 2014. Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th international
conference on semantic systems, SEM ’14. New York: ACM, 32–40.

Reinsel D, Gantz J, Rydning J. 2018. The digitization of the world. From edge to core.
Technical report. Seagate, IDC. Available at https://www.seagate.com/ files/www-
content/ our-story/ trends/ files/ idc-seagate-dataage-whitepaper.pdf (accessed on 28
October 2019).

Sahoo SS, HalbW, Hellmann S, Idehen K, Thibodeau Jr T, Auer S, Sequeda J, Ezzat A.
2009. A survey of current approaches for mapping of relational databases to RDF.
W3C RDB2RDF Incubator Group Report 1:113–130.

Scharffe F, Bihanic L, Képéklian G, Atemezing G, Troncy R, Cotton F, Gandon F,
Villata S, Euzenat J, Fan Z, Bucher B, Hamdi F, Vandenbussche P, Vatant B. 2012.
Enabling linked data publication with the datalift platform. In: Semantic cities, papers
from the 2012 AAAI workshop, Toronto, Ontario, Canada, July 22–23, 2012.

Sequeda JF, Arenas M, Miranker DP. 2012. On directly mapping relational databases
to RDF and OWL. In: Proceedings of the 21st world wide web conference 2012, WWW
2012, Lyon, France, April 16–20, 2012. 649–658 DOI 10.1145/2187836.2187924.

Slepicka J, Yin C, Szekely PA, Knoblock CA. 2015. KR2RML: an alternative interpre-
tation of R2RML for heterogenous sources. In: Hartig O, Sequeda JF, Hogan A,
eds. CEUR workshop proceedings. Proceedings of the 6th international workshop on
consuming linked data co-located with 14th international semantic web conference
(ISWC 2105), Bethlehem, Pennsylvania, USA, October 12th, 2015, vol. 1426. CEUR-
WS.org.

Sperberg-McQueen CM,Miller E. 2004. On mapping from colloquial XML to RDF
using XSLT. In: Extreme Markup Languages R©. Montréal: Online Proceedings
(Mulberry Technologies, Inc.).

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 26/27

https://peerj.com
https://hal.archives-ouvertes.fr/hal-00903568/file/Rapport_Rech_I3S_v2_-_Michel_et_al_2013_-_A_survey_of_RDB_to_RDF_translation_approaches_and_tools.pdf
https://hal.archives-ouvertes.fr/hal-00903568/file/Rapport_Rech_I3S_v2_-_Michel_et_al_2013_-_A_survey_of_RDB_to_RDF_translation_approaches_and_tools.pdf
https://hal.archives-ouvertes.fr/hal-00903568/file/Rapport_Rech_I3S_v2_-_Michel_et_al_2013_-_A_survey_of_RDB_to_RDF_translation_approaches_and_tools.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://dx.doi.org/10.1145/2187836.2187924
http://dx.doi.org/10.7717/peerj-cs.318

Stadler C, Unbehauen J, Westphal P, Sherif MA, Lehmann J. 2015. Simplified
RDB2RDF mapping. In: Bizer C, Auer S, Berners-Lee T, Heath T, eds. CEUR
workshop proceedings. Proceedings of the workshop on linked data on the web, LDOW
2015, co-located with the 24th international world wide web conference (WWW 2015),
Florence, Italy, May 19th, 2015, vol. 1409. CEUR-WS.org.

Tandy J, Herman I, Kellogg G. 2015. Generating RDF from tabular data on the web,
W3C recommendation 17 December 2015. World Wide Web Consortium. Available
at https://www. w3.org/TR/2015/REC-csv2rdf-20151217 .

Theocharis S, Tsihrintzis GA. 2016. Rdf serialization from JSON data: the case of
JSON data in Diavgeia.gov.gr. In: 7th international conference on information,
intelligence, systems & applications, IISA 2016, Chalkidiki, Greece, July 13–15, 2016.
1–6 DOI 10.1109/IISA.2016.7785386.

Thuy PTT, Lee Y-K, Lee S, Jeong B-S. 2007. Transforming valid XML documents into
RDF via RDF schema. In: NWeSP 2007. Third international conference on next
generation web services practices, 2007. NWeSP 2007. Piscataway: IEEE, 35–40.

Thuy PTT, Lee Y-K, Lee S, Jeong B-S. 2008. Exploiting XML schema for interpreting
XML documents as RDF. In: Services computing, 2008. SCC’08. IEEE international
conference on, vol. 2. Piscataway: IEEE, 555–558.

García-González et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.318 27/27

https://peerj.com
https://www. w3.org/TR/2015/REC-csv2rdf-20151217
http://dx.doi.org/10.1109/IISA.2016.7785386
http://dx.doi.org/10.7717/peerj-cs.318

