
Challenges in RDF validation

Jose Emilio Labra-Gayo, Herminio García-González, Daniel Fernández-Alvarez,
and Eric Prud’hommeaux

Abstract The RDF data model forms a cornerstone of the SemanticWeb technology
stack. Although there have been different proposals for RDF serialization syntaxes,
the underlying simple data model enables great flexibility which allows it to be
successfully employed in many different scenarios and to form the basis on which
other technologies are developed. In order to apply an RDF-based approach in
practice it is necessary to communicate the structure of the data that is being stored
or represented. Data quality is of paramount importance for the acceptance of RDF
as a data representation language and it must be enabled by the use of tools that
can check if some data conforms to some specific structure. There have been several
recent proposals for RDF validation languages like ShEx and SHACL. In this chapter,
we describe both proposals and enumerate some challenges and trends thatwe foresee
with regards to RDF validation. We devote more space to what we consider one of
the main challenges, which is to compare ShEx and SHACL and to understand their
underlying foundations. To that end, we propose an intermediate language and show
how ShEx and SHACL can be converted to it.

1 Introduction

RDF is a key part of the Semantic Web. Its data model is a combination of simplicity
and powerful expressiveness which can be applied to represent information in any
domain. RDF was proposed around 1997 and became a W3C recommendation in
1999 [1] using an XML based syntax. It was designed as a knowledge representation

Jose Emilio Labra Gayo · Herminio García-González · Daniel Fernández-Alvarez
University of Oviedo
Spain

Eric Prud’hommeaux
W3C, MIT

1

2 J. E. Labra G. et al

language with a flexible data model based on graphs. RDF Schema (RDFS) was
soon proposed as a means to define RDF vocabularies [2].

At that time, there was some parallel evolution of XML and RDF. XML was
promoted as a data exchange technologywith validation capabilities (DTDs [3],XML
Schema [4], RelaxNG [5], etc.) while RDF acquired a prominent role as a knowledge
representation formalism where RDFS could be used to infer new knowledge rather
than to validate if RDF data conformed to some schema. New proposals emerged
that increased the RDF Schema expressiveness adding the possibility to define full
ontologies which crystallized under the OWL W3C recommendation [6].

In order to use RDF in practice, it was necessary to develop query languages.
Several proposals appeared (see [7]) and in 2008 the SPARQL language became a
W3C recommendation [8]. These technologies: RDF, RDFS, SPARQL and OWL
defined the core semantic web technology stack on which most of the semantic web
applications were based. In order to publish reusable semantic web data on the web,
the linked data principles [9] were proposed as four main guidelines where RDF
is specifically mentioned as one of the standards that provides useful information.
Linked data became popular [10] and a lot of initiatives have been created publishing
linked data information using RDF.

Practical Semantic Web applications require some technology to describe and
validate the RDF data that is being employed [11] by the different stakeholders. The
producers of RDF need to define the intended structure of the RDF graphs they
are generating, while the consumers can check if the received graphs conform to
that structure. In recent years, validating RDF data has acquired a lot of traction
and there have appeared 2 different technologies: ShEx and SHACL with the same
goal: provide an RDF validation and description technology. Given that they share
the same goal and were defined almost at the same time, a question arises as to
whether one or the other should be employed of fits better for some specific use
cases. Solving this question is probably the main challenge to solve in this field at the
moment and for that reason we devote to it most of the chapter space. Although the
future evolution of both languages will depend on multiple factors, we consider that
identifying their foundations using minimal language that can represent both can
help. In this chapter, we give a short overview of ShEx and SHACL from a formal
point of view, review the main differences of their core language and present the
S-language, a minimal language that can be used as an intermediate language for
both. We also present 2 algorithms that convert ShEx and SHACL to S. Although
ShEx and SHACL can be translated to low level S code, higher level translations
between them that preserve the shapes definitions are more difficult. To finalize the
chapter, we identify other challenges and future work that we consider important and
on which we are working at this moment.

This chapter is organized as follows: Section 2 describes the RDF data model.
Section 3 describes the main RDF validation proposals: Shape Expressions (ShEx)
and Shapes Constraint Language (SHACL). Section 3.3 compares both proposals
and section 3.4 defines theS language that can be used to represent both and presents
algorithms to translate ShEx and SHACL to S. Section 4 describes challenges in the
RDF validation field.

Challenges in RDF validation 3

2 RDF data model

There are three main kinds of nodes in RDF: IRIs represented by the set I, blank
nodes represented by the set B and literals represented by L.

An important feature of RDF is the use of IRIs as global identifiers, enabling easy
integration and merging of RDF graphs. Literals are pairs of the form (s, d) where s
is a string representing the lexical form of the literal and d is an IRI that declares the
datatype of that string1. Blank nodes are used in RDF to locally identify nodes as a
kind of semantic variables [12]. An RDF graph g is defined as a set of triples 〈s, p,o〉
such that s ∈ Vs , p ∈ Vp and o ∈ Vo where Vs = I ∪B is the vocabulary of subjects,
Vp = I is the vocabulary of predicates and Vo = I ∪ B ∪ L is the vocabulary of
objects.

Example of a simple RDF graph

The following code presents a simple RDF graph using Turtle notation [13], a
human-readable syntax for RDF.

1 prefix : <http://example.org/>

3 :bob :name "Robert" ;
4 :age "None";
5 :birthPlace :Oviedo ;
6 :enrolledIn :cs102 .
7 :alice :name "Alice" ;
8 :age 23 ;
9 :enrolledIn :cs101 ;
10 :birthPlace :Oviedo ;
11 :knows :carol .
12 :carol :name "Carol" ;
13 :enrolledIn :cs101 .
14 :cs101 :subject "Programming" ;
15 :students :alice, :carol .
16 :cs102 :subject "Algebra" ;
17 :students :bob .

The example is depicted in figure 1. using the RDFShape tool 2 developed by the
first author of this paper.

A property path represents a possible route in a graph between two nodes. The
concept was introduced in SPARQL 1.1 [14] and allows navigational queries over
RDF graphs. Following [15], a property path pp can be defined by the following
grammar:

1 There is also a special kind of literals that have an associated language tag. We omit them in this
chapter to simplify the presentation.
2 RDFShape is deployed at: http://rdfshape.weso.es. The following link can be used to show
that graph or dynamically visualize other RDF graphs: https://goo.gl/48KsEP

http://rdfshape.weso.es
https://goo.gl/48KsEP

4 J. E. Labra G. et al

Fig. 1 RDF graph visualization using the RDFShape tool

pp ::= p | p̂p | pp1 · pp2 | pp∗ | pp1 ∨ pp2 | !{p1 . . . pn}

where p denotes a single predicate. Two nodes n1 and n2 are connected by a property
path e in a graph g if (n1,n2) ∈ [[e]]g where [[e]]g is defined as:

[[p]]g = {(s,o) | 〈s, p,o〉 ∈ g}

[[p̂p]]g = {(o, s) | 〈s, p,o〉 ∈ g}

[[pp1 · pp2]]
g = [[pp1]]

g ◦ [[pp2]]
g

[[pp1 ∨ pp2]]
g = [[pp1]]

g ∪ [[pp2]]
g

[[pp∗]]g =
⋃
i≥1
[[ppi]]g ∪ {(n,n) | n is a node in g}

[[!{p1 . . . pn}]]g = {(s,o) | ∃p with 〈s, p,o〉 ∈ g and p < {p1 . . . pn}}

where ◦ is the composition of binary relations, and ppi is the concatenation pp· . . .·pp
of i copies of pp. The SHACL recommendation uses a subset of SPARQL property
paths which does not include the negation operator !. SPARQL 1.1 allows also the
negation of inverse property sets which we don’t need in this chapter.

Challenges in RDF validation 5

3 Validating RDF Data

3.1 ShEx

Shex was designed as a human-readable and intuitive language for RDF valida-
tion [16]. The syntax adopts Turtle and SPARQL tokens so it is familiar to users of
those languages while the semantics is inspired by XML validation languages like
XML Schema or RelaxNG, which are based on regular expressions. ShEx is being
developed by the W3C Shape Expressions community group and its current version
is called ShEx 2.0 [17].

Basic example of a ShEx schema

The following code declares two shapes: <User> and <Course>.

1 prefix : <http://example.org/>
2 prefix xsd: <http://www.w3.org/2001/XMLSchema#>
3

4 <User> IRI {
5 :name xsd:string ;
6 :age xsd:integer? ;
7 :enrolledIn @<Course >+ ;
8 :knows @<User>* ;
9 :birthPlace IRI ?
10 }
11 <Course> {
12 :subject xsd:string + ;
13 :students @<User> {1,20}
14 }

Nodes conforming to <User> must be IRIs and satisfy the following constraints:

• Theremust be exactly one property :namewhose valuemust belong to the datatype
xsd:string

• There can be an optional property :age whose value must belong to the datatype
xsd:integer

• There must be one or more properties :enrolledIn whose values must conform
to shape <Course>.

• There can be zero or more properties :knows whose values conform to shape
<User>.

• There can be an optional property :birthPlace whose value must be an IRI.

while nodes conforming to <Course> must satisfy the rules:

• There can be one ormore properties :subjectwhose valuemust belong to datatype
xsd:string

• There must be between 1 and 20 properties :studentswhose values must conform
to shape <User>.

6 J. E. Labra G. et al

ShEx validation process also defines the concept of Shape maps, which associate
shapes with sets of nodes that have to be validated.

Example of a shape map

A simple shape map that associates node :alice with shape <User> can be declared
as:

1 :alice@<User>,:bob@<User>

The result of validation in ShEx is also defined in terms of shape maps that
associate nodes to shapes indicating if they conform or not. The ShEx validation
process may trigger the validation of intermediate nodes which can be returned in
the resulting shape map.

Example of a result shape map

The following shapemap is the result of evaluating the RDF graph from example 2
against the ShEx schema 3.1 using the query shapemap from example 3.1. It declares
that :alice and :carol conform to shape <User>, :cs101 conforms to shape <Course>
and :bob does not conform to shape <User>.

1 :alice@<User>,:bob@!<User>,:carol@<User>,:cs101@<Course>

In the rest of the chapter we use a subset of ShEx that captures the main features
of the language and is defined by the abstract syntax defined in table 1, which follows
a similar grammar to the one presented in [18].

se ::= IRI | BNode | datatype(iri) Node constraints
| se1 AND se2 Conjunction
| se1 OR se2 Disjunction
| NOT se Negation
| @l Shape label reference
| CLOSED? (EXTRA p1 . . . pn)? { te } Triple expression te with optional CLOSED

qualifier and optional n ≥ 0 EXTRA predicates pi

te ::= te1; te2 Each of te1 and te2
| te1 | te2 Some of te1 or te2

|
p
−→ se{min,max } Between min and max triples with predicate p

that conform to shape expression se

Table 1 ShEx abstract syntax used in this chapter

Challenges in RDF validation 7

The language has two main terms, shape expressions and triple expressions:

• Shape expressions (denoted by se) define constraints on a node. They can be
simple node constraints (IRI, BNode or datatype(iri)), combinations of the logical
operators AND, OR and NOT, references to other shapes (denoted by @l) and a shape
definition with an optional CLOSED qualifier and n ≥ 0 EXTRA properties pi and a
triple expression te.

• Triple expressions (denoted by te) define the neighbourhood of a node which
represents the triples or arcs incoming and outgoing from it. The basic triple
expression is a triple constraint

p
−→ se{min,max} which declares that there

must be between min and max triples with predicate p whose values conform to
shape se. The values of min are integers, while the values of max can be integers
or unbounded (denoted by ∗). Triple expressions can also be combined using the
each-of operator (;) for unordered concatenation or the alternative operator (|).
For each triple expression te, we define: ps(te) as the set of properties that appear
in te and shapeste as a function that associates for each predicate p the set of
shapes {se |

p
−→ se{min,max} appears in te}.

• In the triple expression
p
−→ se{min,max}, if we omit the {min,max} part, it is

assumed to be {1,1}. The cardinalities {0,∗}, {0,1}, {1,∗} can be simplified by
the symbols ∗,?,+ respectively.

A ShEx-schema is defined as a pair (L, δ) where L is a set of shape labels and
δ : L 7→ se, associates a shape expression s ∈ se to each l ∈ L.

The main differences between the ShEx fragment used here and the full ShEx
language are:

• We employ only 3 types of node constraints: IRI, BNode and datatype(iri) to
declare if a node is an IRI, a blank node or a literal with some datatype while full
ShEx contains a longer list of built-in node constraints like XML Schema facets.
From a semantic point of view, those node constraints have a similar treatment as
the ones we use.

• ShEx has also the possibility to declare node constraints formed by value sets
whose elements can be RDF nodes or stem ranges. From a semantic point of
view, these node constraints could be translated to a set of values which could be
defined in the same way as the 3 built-in node constraints that we propose in this
chapter.

An important feature of ShEx is that properties in triple constraints are closed:
the system collects the possible values of each property and checks that there are no
other values different from those that appear in the triple constraints defined in the
triple expression. This feature can be bypassed by the EXTRA qualifier which declares
that other values different from those that have been declared are admitted.

Example of shape with EXTRA qualifier

The following code declares that nodes conforming to shape <Product> must have
one property <code> whose value belongs to datatype xsd:string, another property

8 J. E. Labra G. et al

whose value belongs to xsd:integer and are allowed to have any other properties
<code> whenever they are not strings or integers.

1 <Product> EXTRA <code> {
2 <code> xsd:string ;
3 <code> xsd:integer ;
4 }

The optional CLOSED qualifier in ShEx declares that the only properties allowed
are those that appear in the triple expression definition. By default, ShEx allows
other properties.

Example of using CLOSED

Given the following RDF data, :dave would conform to shape <User> defined in
example 3.1 even if it has property :gender which was not declared. It would not
conform, if the CLOSED qualifier was added to <User> .

1 prefix : <http://example.org/>
2 :dave :name "Dave" ;
3 :gender :Male ;
4 :enrolledIn :cs103 .
5 :cs103 :subject "Robotics" ;
6 :students :dave .

The shape maps specification [19] defines shape maps as sets of associations with
the form ns@l, where ns is a node selector and l ∈ L is a shape label. Node selectors
can be RDF nodes or triple patterns. A triple pattern has the form {s p o} where s
can be an IRI, the keyword FOCUS or the wildcard _, p is a predicate, and o can be
an IRI, a literal, the keyword FOCUS or the wildcard _. Given a node selector ns and
an RDF graph g, the nodes selected by ns in graph g, denoted by [[ns]]g are defined
in table 2.

[[n]]g = {n}

[[{FOCUS p o}]]g = {n | 〈n, p, o〉 ∈ g}

[[{FOCUS p _}]]g = {n | ∃o 〈n, p, o〉 ∈ g}
[[{s p FOCUS}]]g = {n | 〈s, p, n〉 ∈ g}
[[{_ p FOCUS}]]g = {n | ∃s 〈s, p, n〉 ∈ g}

Table 2 [[ns]]g = nodes selected by ns in graph g

Challenges in RDF validation 9

Example of a shape map with a node selector

The following shape map:

1 :alice@<User>,{FOCUS rdf:type :Person}@<User>

selects node :alice and all nodes with rdf:type :Person to be validated as <User>.

3.2 SHACL

In July, 2017, SHACL was approved as a W3C recommendation[20]. SHACL was
influenced by SPIN [21] and OSLC Resource Shapes [22]. The language was di-
vided in two parts: SHACL Core which contains built-in constraint components and
SHACL-SPARQL, which defines a mechanism that allows users to create their own
constraint components using SPARQL. In this chapter, we will focus on SHACL
Core.

SHACL defines Shapes as groups of constraints. There are two main types of
shapes: node shapes which constraint the values of some node, and property shapes
which constraint the values of a particular property or path.

A difference between the concept of shape in ShEx and SHACL is that in SHACL,
shapes can also contain target declarations about which nodes or sets of nodes must
be validated. This is accomplished with shape maps in ShEx. In section 3.3 we
present an algorithm to convert SHACL target declarations to ShEx shape maps.

Example of a SHACL shapes graph

The following code declares two node shapes <User> and <Course> which have a
meaning similar to the ShEx shapes represented in example 3.1. The <User> shape
contains 5 constraint components, a node kind declaration (line 2) and 4 anonymous
property shapes. The first property shape has path :name and declares that values
of predicate :name must be literals with datatype xsd:string and that the number
of such values must be exactly one. The rest of property shapes are similar, when
there is no sh:minCount declaration it is assumed 0, and when there is no sh:maxCount
declaration, it is assumed unbounded. The third property shape (lines 11-13) has path
:enrolledIn and uses the constraint sh:node to declare that the values of predicate
:enrolledIn must satisfy the shape <Course>. The <Course> shape is composed of
two property shapes. Notice that this definition is recursive as it contains a cyclic
dependency between shapes <User> and <Course>.

1 <User> a sh:NodeShape;
2 sh:nodeKind sh:IRI ;
3 sh:property [sh:path :name ;
4 sh:minCount 1; sh:maxCount 1;

10 J. E. Labra G. et al

5 sh:datatype xsd:string ;
6] ;
7 sh:property [sh:path :age ;
8 sh:maxCount 1;
9 sh:datatype xsd:integer ;
10] ;
11 sh:property [sh:path :enrolledIn ;
12 sh:node <Course> ;
13] ;
14 sh:property [sh:path :knows ;
15 sh:node <User> ;
16] .
17 <Course> a sh:NodeShape ;
18 sh:property [sh:path :subject ;
19 sh:minCount 1;
20 sh:datatype xsd:string ;
21] ;
22 sh:property [sh:path :students ;
23 sh:minCount 1; sh:maxCount 20;
24 sh:node <User> ;
25] .

SHACL processors take as input an RDF graph to be validated, called the data
graph, and another RDF graph which contains the shapes declarations, called shapes
graph and denoted by Sg. A shapes graph Sg contains nodes with shape declarations
which can be either node shapes (with type sh:NodeShape) or property shapes (with
type sh:PropertyShape). Each shape is formed by a list of target declarations and
constraint components:

• Target declarations associate sets of nodes in the data graph with shapes with
which they must be validated. For example: <User> sh:targetNode :alice;
sh:targetClass :Person declares the following nodes to be validated with shape
<User>: node :alice and all nodes that have rdf:type :Person or that are
rdfs:subClassOf some node which has rdf:type :Person.

• Constraint components declare constraints on nodes. Table 3 contains the list of
constraint components that we will use in this chapter.

Property shapes must contain the sh:path declaration that identifies the path
of values that are constrained for some focus node. SHACL paths are a subset of
SPARQL property paths.

3.3 Comparing Shex and SHACL

Although ShEx and SHACL have a similar goal: describing and validating RDF
graphs, they were designed with different priorities and there are several differences
between them that need to be taken into account. Chapter 7, of [23] contains a more

Challenges in RDF validation 11

Constraint Parameter Meaning
sh:minCount Integer n n or more values must satisfy the constraint
sh:maxCount Integer n No more than n values must satisfy the constraint
sh:nodeKind sh:IRI Node must be an IRI
sh:nodeKind sh:BlankNode Node must be a blank node
sh:datatype IRI dt Node must be a literal with datatype dt
sh:node Node n Node must conform to shape n (unqualified)
sh:qualifiedValueShape Node n Node must conform to shape n (qualified)
sh:qualifiedMinCount Integer n n or more qualified values satisfy the constraint
sh:qualifiedMinCount Integer n No more than n qualified values satisfy the constraint
sh:property Node ps Each node satisfies the property shape ps

Table 3 Subset of SHACL code constraint components used in this chapter

detailed comparison of both ShEx and SHACL. In this section we overview the main
points:

• Syntactic differences. ShEx has been designed from the start to be an intu-
itive, domain-specific language with its own compact syntax similar to Turtle or
SPARQL. ShEx schemas can be serialized using compact syntax as well as any
other RDF syntax (JSON-LD, Turtle, etc.). Any of those syntaxes are interchange-
able and the schemas can be converted between one syntax to the other. On the
other hand, SHACLwas designed as an RDF vocabulary. There was a proposal for
a compact syntax that was not accepted as part of the SHACL recommendation.

• Underlying philosophy. ShEx schemas look like grammar specifications which
can be employed to define the content of RDF data. There is more emphasis on
positive validation results defined by result shape maps than on error reporting.
SHACL’s emphasis is more on constraint validation and error reporting. The
SHACL specification details the format of violation errors while it leaves unspec-
ified the format of positive validations or conformant nodes. In practice, in most
SHACL implementations, it is difficult to distinguish between a conformant node
and a node that was intentionally or accidentally skipped3.

• Invoking validation and shape maps. ShEx separates the concept of shapes
from the association of which nodes will be validated with those shapes. This
is a design choice motivated by the need to reuse shape definitions in different
contexts. SHACLshapes can have target declarations integrated in their definitions
which may make those shapes less reusable in different contexts. It is possible
to translate SHACL target declarations to ShEx shape maps that allow property
paths in the predicate position. The translation can be defined as:

3 An exception is our Shaclex library[24] which also provides information about conformant nodes

12 J. E. Labra G. et al

〈s, sh:targetNode,n〉 = n@s

〈s, sh:targetClass, c〉 = {FOCUS rdf:type/rdfs:subClassOf* c}@s

〈s, sh:targetSubjectsOf, p〉 = {FOCUS p _}@s

〈s, sh:targetObjectsOf, p〉 = {_ p FOCUS}@s

• Semantic specification. The ShEx semantic specification is based on formal
mathematical terms. It provides a semantics for recursive shapes. The combina-
tion of recursion and negation is solved by imposing the requirement that there
is no negated reference from one shape to itself directly or indirectly. With this
requirement, it is possible to define a well-founded semantics using stratifica-
tion [18, 25].
SHACL was initially defined using SPARQL templates and some auxiliary func-
tions although the final recommendation employs a natural language description
of the language. In the case of SHACL, the validation of recursive shapes is
not defined and is left to SHACL processor implementations. Corman et al. [26]
have recently proposed a SHACL semantics based on partial assignments that
handles the combination between negation and recursion. However, at the time of
this writing, we are not aware of any SHACL implementation that supports that
semantics.

• Modularization and shape reusability. ShEx has a built-in declaration to import
some schema from an IRI while SHACL processors recognize the owl:imports
property to transitively following and importing the referenced shapes graphs.
It is possible to extend a shape from another shape in both languages using the
conjunction operator. This feature restricts the values of existing properties which
may not always be the intended result if some of them are repeated properties.

• Inference. ShEx validators are focused on RDF graphs as they are presented
to the validator without any interaction between validation and any inference
mechanism. On the other hand, SHACL has several features that can interact
with inference engines. For example, the sh:targetClass declaration has a partial
built-in treatment of the property rdfs:subClassOf from RDFS, which means that
it handles only the closure of that property while ignoring other RDFS properties
like rdfs:domain, rdfs:range, etc. This feature can make full RDFS entailment
incompatible with SHACL validators.

• Property paths and property pair constraints. ShEx defines triple constraints
over a single property defined by an outgoing arc (a predicate) or an inverse arc
(represented by symbol ^). By contrast property shapes in SHACL use property
paths, e.g. :knows/:name. In ShEx, such steps in a path require intermediate shapes,
e.g. :knows { :name xsd:string }. Cardinality constraints applied to SHACL
property paths are satisfied by any traversal of the property steps while in ShEx,
the intermediate shapes would each require explicit cardinality constraints.

Example using property paths

Challenges in RDF validation 13

A shape <Invoice> whose nodes have exactly one :payment with exactly one
:amount of datatype xsd:integer can be declared in ShEx as:

1 <Invoice> {
2 :payment { :amount xsd:integer } ;
3 }

In SHACL, it is possible to define a similar encoding with two shapes, but one
may also be tempted to use a property path as follows:

1 <Invoice> a sh:NodeShape ;
2 sh:property [sh:path (:payment :amount) ;
3 sh:datatype xsd:integer ;
4 sh:minCount 1 ; sh:maxCount 1
5] .

However, with that shapes graph, node :wrongInvoice in the followingRDFgraph:

1 :wrongInvoice :payment _:1, _:2 .
2 _:1 :amount 3 .
3 _:2 :amount 3 .

would conform to <Invoice> having two payments, which may not be the intended
behavior. As can be seen, it may be risky to combine cardinality constraints with
SHACL property paths that don’t terminate in unique values.

SHACL also added several built-in components that allow to constrain the values
identified by two property constraints comparing if they are equal, disjoint, less-
than, etc.

Example with SHACL property path comparisons

The following code declares that the values of :firstName and :givenName must
be equal, and that the values of :birthDate must be lower than the values of
:loginDate.

1 <User> a sh:NodeShape ;
2 sh:property [
3 sh:path :firstName ;
4 sh:equals :givenName ;
5] ;
6 sh:property [
7 sh:path :birthDate ;
8 sh:lessThan :loginDate
9] .

This feature is currently not supported by ShEx, although there are some proposals
to extend the language including it.

14 J. E. Labra G. et al

• Repeated properties. The ShEx abstract syntax discriminates shape expressions
from triple expressions. Triple expressions define the neighbourhood of a node
in a grammar-like way, taking into account repeated properties, while shape
expressions act as sets of constraints. SHACL does not have the concept of triple
expressions and the constraint components are conjunctive. In this way, repeated
properties in SHACL are conjunctive, which may require some special care.

Example with repeated properties

The following ShEx schema declares that a product must have two codes, one
with a string value and another with an integer value.
1 <Product> {
2 :code xsd:string ;
3 :code xsd:integer ;
4 }

A erroneously simple translation to SHACL might be:
1 <Product> a sh:NodeShape ;
2 sh:property [sh:path :code ;
3 sh:minCount 1 ; sh:maxCount 1;
4 sh:datatype xsd:string
5] ;
6 sh:property [sh:path :code ;
7 sh:minCount 1 ; sh:maxCount 1;
8 sh:datatype xsd:integer
9] ;
10 .

which is not the intended meaning. That expression would be represented in ShEx
as:
1 <Product> {
2 :code xsd:string ;
3 } AND {
4 :code xsd:integer ;
5 }

and means that there must be exactly one property :code whose value must be
string an integer at the same time. In order to correctly express it in SHACL the
repeated properties would need to be qualified.

• Extension mechanism. The extension mechanism of ShEx is based on semantic
actions while SHACL is based on SHACL-SPARQL. We leave these extension
mechanisms out-of-the scope of this chapter and focus only on the core features
of the languages: ShEx without semantic actions and SHACL-core.

As can be seen from the previous list, there are significant differences between
both languages so it may be difficult to integrate them in the near future. However,

Challenges in RDF validation 15

in the next section, we present a unified language that captures the main features of
both ShEx and SHACL.

3.4 Language S

LanguageS is a simple language that captures the essence of both ShEx and SHACL.
The language-S defines a shape φ as:

φ ::= > true
| @l reference to shape with label l
| datatype(iri) node has datatype iri
| IRI node is an IRI
| BNode node is a blank Node
| φ1 ∧ φ2 conjunction of shape φ1 and shape φ2
| ¬φ negation of shape φ
|

p
−→ φ{min,max} between min and max routes

with property path p
whose values conform to shape φ

min ::= integer minimal cardinality
max ::= integer maximal cardinality or

| ∗ unbounded
AS-Schema is defined as a pair (L, δ)where L is a set of labels and δ is a function

that associates a shape φ for each label l ∈ L.
This language is a combination between the SHACL abstract syntax defined

in [26] as language L and the Shapes-constraint language defined in [27], the main
differences with these languages are:

• We added a explicit reference symbol @l to declare a reference to a shape
identified by label l.

• We define three primitive constraints: IRI to check that a node is an IRI, BNode
to check that a node is a blank node, and datatype(iri) to check that a node is a
literal with some datatype identified by iri.

• The expression ≥n r .φ from L which was satisfied if there were n or more arcs
with property path r conforming to φ has been generalized to the expression

p
−→ φ{min,max} which is satisfied whenever there are between min and max

routes defined by property path p that conform to shape φ.
The expression

p
−→ φ{min,max} represents qualified routes (similar to the

sh:qualifiedValueShape constraint component in SHACL) which are not closed
as in ShEx, i.e. there can be values of properties p ∈ p which don’t conform to φ
as long as the values that do conform are between min and max.

• By default, the shapes in S are open, i.e. there can be other properties apart of
the specified in the shape declaration.

• We have omitted the expression r1 = r2 that compares values of properties for
simplicity.

16 J. E. Labra G. et al

Example of an S expression

The following S-schema, declares that nodes conforming to shape <Product>
must be IRIs and must have exactly one property :code with a value of datatype
xsd:string, they can zero or more properties :seeAlso whose values conform to
shape <Product> and they can not have other properties different from :code or
:seeAlso (cardinality {0,0}).

Product 7→ IRI ∧
:code
−−−−→ datatype(xsd:string){1,1} ∧
:seeAlso
−−−−−−−→ @Product{0,∗} ∧
!{:code,:seeAlso}
−−−−−−−−−−−−→ >{0,0}

(1)

The semantics of S can be defined using a 3-valued logic following the stable
reasoning approach[28]: a formula may be true or false, but there are two kinds
of truth: certain truth (denoted by 2) and truth-by-default (denoted by 1). False is
denoted by 0.

Table 3.4 presents an inductive definition of the semantics of S where [[φ]]n,g,σ
denotes the value of shape φ for node n in graph g with regards to the schema σ.
The table uses two auxiliary definitions. The first one counts the number of routes
according to a property path p departing at node n in graph g for which the evaluation
of target node returns a value v.

#n,φ,g,σp,v = |(n, t) ∈ [[p]]g | [[φ]]t ,g,σ = v | (2)

The second one counts all the routes departing at node n with property path p in
graph g.

#n,gp = |(n, t) ∈ [[p]]g | (3)

Notice that the semantics is recursive and a naive implementation of an interpreter
based on this definition can create an infinite loop when validating recursive shape
declarations.

3.5 From SHACL to S

Given that S is a generalization of the language presented in [26], the translation
from SHACL to S is similar to the translation presented in appendix 1.2 of [29].

Challenges in RDF validation 17

[[>]]n ,g ,σ = 2
[[@l]]n ,g ,σ = [[σ(l)]]n ,g ,σ

[[datatype(iri)]]n ,g ,σ =

{
2 if n has datatype iri
0 otherwise

[[IRI]]n ,g ,σ =

{
2 if n is an IRI
0 otherwise

[[BNode]]n ,g ,σ =

{
2 if n is a blank node
0 otherwise

[[φ1 ∧ φ2]]
n ,g ,σ = min([[φ1]]

n ,g ,σ , [[φ2]]
n ,g ,σ)

[[¬φ]]n ,g ,σ =

{
2 if [[φ]]n ,g ,σ = 0
0 otherwise

[[
p
−→ φ{min,max }]]n ,g ,σ =

2 if #φ,v ,g ,σ

p ,2 ≥ min ∧ #n ,g
p − #φ,n ,g ,σ

p ,0 ≤ max

0 if #n ,g
p − #φ,n ,g ,σ

p ,0 < min ∧ #φ,v ,g ,σ
p ,2 > max

1 otherwise

Table 4 Inductive definition of [[φ]]n ,g ,σ for shape φ, node n, graph g and S-schema σ

For readability, we assume the following restrictions on the shapes graph which
simplify the translation:

• Each node can be either node or a property shape, and is marked by its corre-
sponding sh:NodeShape or sh:PropertyShape type declaration.

• Shapes are normalized so they contain at most one sh:minCount, sh:maxCount
, sh:qualifiedMinCount or sh:qualifiedMaxCount declaration. There is only one
non-qualified constraint component: sh:nodeKind, sh:datatype, sh:node or a qual-
ified constraint component sh:qualifiedValueShape in each property shape.

• The conversion is focused on the structural constraints, ignoring target declara-
tions, which can be converted to a data structure similar to ShEx shape maps.

The transformation from SHACL to S is straightforward except that in the case
of non-qualified property shapes, it is necessary to close the property definitions
adding a constraint (line 8) that declares that there can’t be values which don’t satisfy
the property shape.

Example converting SHACL to S

Following algorithm 1, the SHACL shapes graph:

1 <User> a sh:NodeShape ;
2 sh:nodeKind sh:IRI ;
3 sh:property [sh:path :name ;
4 sh:datatype xsd:string ;
5 sh:minCount 1; sh:maxCount 1
6] ;

18 J. E. Labra G. et al

7 sh:property [sh:path :knows ;
8 sh:node <User> ;
9] .

would be converted to:

<User> 7→IRI ∧
:name
−−−−→ datatype(xsd:string){1,1}∧
:name
−−−−→ ¬datatype(xsd:string){0,0}∧
:knows
−−−−−→ @<User>{0,∗}∧
:knows
−−−−−→ ¬@<User>{0,0}

(4)

3.6 From ShEx to S

Algorithm 2 presents Sx2s a conversion between ShEx-schemas to S-Schemas. It
takes as input a ShEx-schema (L, f) and associates each label l ∈ L to its the result
of applying sx2s() to the shape expression identified by l. Most of the definitions are
straightforward, with special care taken to closed or extra properties. In the case of
closed triple expressions, it is necessary to add a constraint that limits the appearance
of other properties not mentioned in the triple expression (line 10). The function
extraOrClosed checks if a property is part of the EXTRA set to declare that it
allows other values for it different from the shapes mentioned in the triple expression
(line 20), otherwise, it limits the appearance of values not satisfying those shapes
(line 22).

Example converting ShEx to S

Following algorithm 2, the ShEx-schema:

1 <User> {
2 :name xsd:string ;
3 :knows @<User>* ;
4 }

is converted to the S-schema (4).
If we add the closed qualifier and an EXTRA definition as:

1 <User> CLOSED EXTRA :name {
2 :name xsd:string ;
3 :knows @<User>* ;

Challenges in RDF validation 19

Algorithm 1: SHACL to S-schema: Sh2s
Input: A SHACL shapes graph Sg

Output: An S-Schema
1 return ∀n ∈ Sg | 〈n, rdf:type, sh:NodeShape〉 ∨ 〈n, rdf:type, sh:PropertyShape〉

λn→ sh2s(n)

2 defn sh2s(e) = shape(n) ∧
∧

ps∈propShapes(n)

ps2s(ps)

3 defn propShapes(n) = {ps | 〈n, sh:property, ps 〉 ∈ Sg}
4 defn ps2s(ps) = if qualifiedShape(ps)

5
path(ps)
−−−−−−−−→ shape(ps){qminCard(ps), qmaxCard(ps)}

6 else
7

path(ps)
−−−−−−−−→ shape(ps){minCard(ps),maxCard(ps)}∧

8
path(ps)
−−−−−−−−→ ¬shape(ps){0, 0}

9 defn path(ps) = {p | 〈ps , sh:path, p〉 ∈ Sg }

10 defn shape(n) =

@l if 〈n, sh:node, l〉 ∈ Sg

datatype(iri) if 〈n, sh:datatype, iri〉 ∈ Sg

IRI if 〈n, sh:nodeKind, shIRI 〉 ∈ Sg

BNode if 〈n, sh:nodeKind, sh:BlankNode〉 ∈ Sg

@l if 〈n, sh:qualifiedValueShape, l〉 ∈ Sg

11 defn qualifiedShape(ps) =

{
true if 〈ps , sh:qualifiedValueShape, _〉 ∈ Sg

f alse otherwise

12 defn minCard(ps) =

{
n if 〈ps , sh:minCount, n〉 ∈ Sg

0 otherwise

13 defn maxCard(ps) =

{
n if 〈ps , sh:maxCount, n〉 ∈ Sg

∗ otherwise

14 defn qminCard(ps) =

{
n if 〈ps , sh:qualifiedMinCount, n〉 ∈ Sg

0 otherwise

15 defn qmaxCard(ps) =

{
n if 〈ps , sh:qualifiedMaxCount, n〉 ∈ Sg

∗ otherwise

4 }

the S expression is:

<User> 7→IRI∧
:name
−−−−→ datatype(xsd:string){1,1}∧
:knows
−−−−−→ @<User>{0,∗}∧
:name
−−−−→ ¬datatype(xsd:string){0,∗}∧
:knows
−−−−−→ ¬@<User>{0,0}∧
!{:name,:knows}
−−−−−−−−−−−−→ >{0,∗}

(5)

20 J. E. Labra G. et al

Algorithm 2: ShEx schema to S-schema: Sx2s
Input: A ShEx schema (L, f)
Output: An S-Schema

1 return ∀l ∈ L : l→ sx2s(f (l))

2 defn sx2s(s) = match e
3 case s1 AND s2 ⇒ sx2s(s1) ∧ sx2s(s2)
4 case s1 OR s2 ⇒ sx2s(s1) ∨ sx2s(s2)
5 case NOT s ⇒ ¬sx2s(s)
6 case @l ⇒ @l
7 case CLOSED? (EXTRA p1 . . . pn)? { te } ⇒ let
8 s1 = te2s(te))
9 s2 = if CLOSED
10

!ps(t e)
−−−−−−→ >{0, 0}

11 else
12 >

13 in s1 ∧ s2 ∧
∧

p∈ps(t e)

extraOrClose(p, te, {p1 . . . pn })

14 defn te2s(te) = match te
15 case te1; te2 ⇒ te2s(te1) ∧ te2s(te2)
16 case te1 | te2 ⇒ te2s(te1) ∨ te2s(te2)

17 case
p
−→ se{min,max } ⇒

p
−→ sx2s(se){min,max }

18 defn s1 ∨ s2 = ¬(¬s1 ∧ ¬s2)
19 defn extraOrClosed(p, te, extras) = if p ∈ extras
20

p
−→ notShapes(p, te){0, ∗}

21 else
22

p
−→ notShapes(p, te){0, 0}

23 defn notShapes(p, te) = ¬sx2s(ORs∈shapes t e (p)s)

4 Challenges

In this section, we identify some current challenges and trends related with RDF
validation.

4.1 Negation, recursion and semantics

As we described in section 3.3 the approach followed by ShEx and SHACL with
regards to negation and recursion is different. ShEx specification proposes an
stratification-based semantics limiting the possible schemas to those that have no
negative cyclic dependencies, while SHACL leaves recursive shapes out of the spec-

Challenges in RDF validation 21

ification. Corman et al. proposed a SHACL semantics based on partial assignments
to solve the problem [26]. In their paper, they present an abstract language which is
similar to the S-language presented in section 3.4 and they show that SHACL can
be defined in terms of that language.

In this chapter we show that theS-language can also be used as the target language
for ShEx. We have deliberately omitted any restriction about combining negation
and recursion in Sto allow further research on possible solutions.

One approach we are currently working on is to define the S-language by conver-
sion to Answer-Set Programming (ASP). We have already implemented a prototype
that, given an RDF graph g, a S-schema, and a shape map, generates an ASP encod-
ing that can be run to obtain a result shape map with the validation results (see [24]).
We consider that it is be possible to extend the semantics of ShEx or SHACL to
handle recursion and negation using answer set programming and stable reasoning
techniques.

4.2 Shapes Libraries and reusability

A traditional use case is to describe a library of shapes that can later be reused in
different contexts. To that end, it is necessary to be able to reuse an already declared
shape in another context by different authors.

Both ShEx and SHACL can compose one shape from another one by conjunction.

Basic example of shapes extension by conjunction

For example, one may define a <Teacher> shape as a conjunction of <User> and
a new shape that declares that there one or more properties :teaches whose values
have shape <Course> as:

1 <User> {
2 :name xsd:string ;
3 :knows @<User>* ;
4 }
5 <Teacher> <User> AND {
6 :teaches @<Course >+
7 }

When there are repeated properties, composing by conjunction can be unintuitive
as it restricts the values of those existing properties. ShEx is introducing a new
keyword extends which takes into account the repeated properties and injects their
values in the corresponding triple expressions.

Example using extension and repeated properties

22 J. E. Labra G. et al

The following definition declares Book as a product which has a property :code
with an integer value.
1 <Product> {
2 :code xsd:string ;
3 :related @<Product >* ;
4 }
5 <Book> extends <Product> {
6 :code xsd:integer
7 }

In this case, the definition of book would be equivalent to:
1 <Book> {
2 :code xsd:integer
3 :code xsd:string ;
4 :related @<Product >* ;
5 }

If we had tried to use composition by-conjunction, it would not be possible that
a node had shape <Book> as the value of property :code would be declared as the
conjunction of integer and string. Likewise, if <Product>were CLOSED, the conjunction
of <Product> and <Book> would be unsatisfiable.

5 Shapes and the Semantic Web Stack

The appearance of RDF validation languages as new technologies in the Semantic
Web field needs to find a place to coexist with the already established ones like
SPARQL, RDFS or OWL. Although shapes languages can replace SPARQL for the
validation task, they are not intended to replace it for RDF querying. On the contrary,
shapes definitions can be very useful for data portal documentation [11] and to drive
SPARQL queries. Shapes can help with subgraph extraction, identifying subgraphs
in large knowledge graphs. For example, one may be interested to extract all nodes
that conform to some specific shape and shapes can drive the SPARQL queries which
extract those nodes.

RDFS has traditionally been employed not only for inference but also for docu-
menting RDF vocabularies. We expect that more and more vocabularies will grad-
ually convert their documentation to shapes declarations which offer the ability to
automatically check conformance of RDF data to those descriptions.

In the case of OWL and ontology languages, shapes languages have not been
designed for inference and have a more low level focus. While an ontology engineer
is usually focused on domain knowledge, a shapes designer is more focused on
graphs, and their topology. Nevertheless, given that a shapes processor has the
ability to check or infer if some node conforms to some shape, it may be possible to
use shapes processors for some inference tasks. As an example, there is a SHACL

Challenges in RDF validation 23

proposal to define rules in SHACL [30] which can be used to infer new triples from
the asserted ones. It remains to be seen what role will this approach play with regards
to other rule based proposals.

5.1 Data transformation

Although semantic web technologies offer a good environment to build new systems,
there are a lot of previous projects outside the field. Taking that projects—often
information silos—and integrating them into semantic technologies is a challenge
that practitioners are facing nowadays.

It can be divided in two main fields: data transformation and data integration.
Data transformation refers to the ability to convert data represented in a non semantic
format to a semantic format without losing information nor semantics. On its side,
data integration is not only how to translate data but how to integrate and reconcile
them in a single source of information. Consistency and cohesion are fundamental
in this topic.

There are a lot of works in transforming from XML to RDF following different
techniques: using a mapping file between XML Schema and OWL to then convert
from XML to RDF [31], using XML Schema for the mappings [32], mapping XML
Schema to RDF Schema to then provide a mechanism to query RDF data over an
XML file [33], using the procedure as in [33] but using DTDs [34], using XSLT [35],
embedding XSLT into schemata definitions [36], using XSLT with SPARQL [37],
and creating a new languageXSPARQLwhich combines XQuery and SPARQL [38].
These procedures are also supported for other formats like: CSV [39] or relational
databases [40],

Providing solutions to integrate different sources of information could promote
migration and exploitation of data. This field is being addressed by some works
like: RML [41] which extends R2RML to provide transformation and integration of
heterogeneous data sources, andYARRRML [42]which follows the same philosophy
as RML but is designed to be human-friendly.

Once we are able to transform and integrate data from different formats we need to
know if the transformation is still valid and if the integration is valid against a business
model. For that purpose, one possibility is to make a one-to-one transformation, like
we have explored in XMLSchema2ShEx [43].

Although these kinds of solutions could be valid when transforming from only
one format, they are not well fitted in an heterogeneous data sources environment.
Firstly, because the input schema and the output schema could not be the same and
because heterogeneous data sources could not share the same schemata.

Here come the challenge of mapping and merging technologies which must not
only make possible to map and merge heterogeneous data but also take into account
that the datamust be valid and validated. Therefore, solutions that integrate both tasks
of data management could offer an invaluable tool for Semantic Web practitioners.

24 J. E. Labra G. et al

5.2 Schema inference

The traditional way to introduce schema notions in Semantic Web environments is
called the schema first approach [44]. This strategy consist on defining a priori the
schema that the data should follow. The traditional language to describe the expected
content of RDF graphs following a schema first strategy was RDFS. Both ShEx and
SHACL can be used for such a purpose, which also allow to define data constraints
for validation.

On the other hand, schema last approaches compute an already existing source
for discovering the schema that has naturally emerged from the data. In XML, for
example, there are techniques able to produce schemata in RelaxNG [45] or XML
Schema [46]. Different approaches have been proposed to make schema inference
over RDF sources in the last decade, aiming for different goals ranging from statistical
meta-data extraction [47, 48, 49] using VoID descriptions [50], or more complex
structural inferences, such as concept hierarchies [51], graph summarization [52], or
development of relational schemata that fits most of the data [44].

Some works are already making inference over RDF graphs to produce ShEx
schemata. In [53] the authors compute the English chapter of DBpedia to produce
shapes using a compliant subset of ShEx associated to each class in DBpedia’s
Ontology. Another approach that has already been tackled is to learn SHACL-
SPARQL for relations [54].

5.3 Validation, modelling and visualization

A common practice when documenting RDF vocabularies is draw a UML-like
class diagram where the different classes are depicted with the possible properties
and linked to related classes. Some examples are DCAT [55], the organization
ontology [56], the RDF Data Cube [57]. These kind of UML-like diagrams are
useful as they can represent the structure of RDF content in an intuitive way. Given
that ShEx and SHACL can describe RDF data models, it is not surprising that there
are some recent proposals to graphically represent shapes which are backed-up by
ShEx or SHACL shapes. As an example, the RDFShape playground developed by
the authors of this paper [58] can be used to visualize shapes schemas. The result of
visualizing the ShEx schema presented in example 3.1 is depicted in figure 2. The
tool translates ShEx-schemas to PlantUML4 which are converted to SVG on-the-fly.

Another schema authoring strategy is to leverage the extensive user interface
investment in existing UML tools. The uml-model5 system parses UML (encoded as
XMI) and exports ShEx.

4 http://plantuml.com

5 https://github.com/ericprud/uml-model

http://plantuml.com
https://github.com/ericprud/uml-model

Challenges in RDF validation 25

Fig. 2 Visualization of the ShEx Schema presented in example 3.1

We expect that further work is developed not only to visualize existing schemas,
but also to edit them. In the case of SHACL, the TopBraid suite by TopQuadrant 6
offers SHACL support via a web-based editor and an integrated development envi-
ronment. SHACL4P [59] has been implemented as a SHACL plugin for the Protégé
editor. Also, the Eclipse Lyo project 7 is currently working on this direction using
the Shaclex [24] library.

5.4 Validation usability

As we said in section 3.3, ShEx and SHACL had different priorities with regards to
information about the validation results. While ShEx was more focused on informa-
tion about which nodes were valid, SHACLwasmore focused on the violation errors.
In this way, most ShEx implementations provide a result shape map which has infor-
mation about the nodes/shapes associations that passed or failed. This information
can be enriched with some implementation dependent information.

By contrast, the SHACL recommendation provides a detailed information about
the different kinds of violation errors that can appear during validation, while it does
not prescribe which information should be given for nodes that conform to shapes.
In practice, most SHACL implementations do not provide any information about
which nodes have been validated. Sometimes, it is not possible to know if an RDF
graph is valid because all nodes pass the prescribing shapes, or it is reported as valid
but no node has been selected by wrong target declarations.

We consider that further research must be done, both for improving the messages
reported to users during validation, helping during the debugging phases or even
to differentiate between different kinds of errors or validations. ShEx provides a
generic annotation mechanism making possible to annotate some triple expressions

6 https://www.topquadrant.com/

7 https://www.eclipse.org/lyo/

https://www.topquadrant.com/
https://www.eclipse.org/lyo/

26 J. E. Labra G. et al

about their severity. The Validata tool extended ShEx with the keywords: MUST, MAY,
SHOULD, etc. [60] which could improve the visualization results. SHACL provides a
simple mechanism to declare the severity of some shape with three built-in possibil-
ities: sh:Info, sh:Warning and sh:Violation. However, the validation process is not
affected by these severity declarations, and are mainly informative. We consider that
further research must be done to improve the error messages provided to the end-user
and to provide the shapes author to tailor the information that will be reported by the
processors.

Another approach could be to define approximate validation algorithms based
on probabilistic reasoning which could offer a more flexible experience where the
results are not black or white but have some percentages. This approach has recently
been tackled for probabilistic type systems in programming languages also [61].

5.5 Real time and streaming validation

The availability of sensors and similar devices that continually generate data to be
processed on-the-fly has caused the emergent popularity of Stream Processing tech-
niques. Stream reasoning extends these approaches with logical inference usually
based on RDF data. Several initiatives have proposed to handle RDF streams like
C-SPARQL [62], CQELS-QL [63], SPARQLSTREAM [64]. The RDF Stream Pro-
cessing (RSP)W3C community group specified an data model [65] which defines an
RDF stream as a potentially unbounded sequence of RDF graphs with time-related
metadata.

To our knowledge, most ShEx and SHACL implementations are based on an
in-memory RDF graph which is validated against a shapes schema. Adapting this
validation model to handle RDF streams poses several challenges.

• Validation of named graphs. Given that the RSP data model represents RDF
streams as a sequence of named graphs with timestamps or similar metadata, it
seems necessary to extend the RDF validation languages to support RDF datasets,
i.e. collections of RDF graphs.

• Expressiveness. RDF stream validators may also provide new operators to take
into account the RDF stream windows during validation. LARS [66] is a rule-
based framework which extends ASP for stream reasoning seems an interesting
approach that can match with the ASP implementation of the S-language.

• Incremental validation. The practical application of validation in a streaming con-
text may require to avoid the complete re-validate of an already validated graph,
adopting incremental validation algorithms. In the LARS framework, Ticker [67]
present the notion of tick streams that formally represent the aspects of an in-
cremental stream reasoning system. The system uses two strategies, one using
Clingo, and the other, truth maintenance techniques. It may be interesting to see
if the ASP encoding that can be developed for the S-language can be adapted to
be used in Ticker.

Challenges in RDF validation 27

• Performance of RDF stream validation. In order to offer real-time answer, it is
necessary to validate the timestamped RDF graphs in a very efficient way. To that
end, it may be necessary to identify less expressive ShEx or SHACL profiles with
less expensive complexity.

6 Conclusions and future work

RDF validation has gained traction in the last years with the development of two
technologies: ShEx and SHACL, which can be applied for it. Although both have
similar goals, there are several differences and commonalities that must be under-
stood in order to clarify in which use cases we should apply one or the other, or to
offer guidelines about the future versions of the languages. We have presented the
minimal language S which can represent both and we have shown two algorithms
that convert ShEx and SHACL to S. S can be used as an intermediate language
in which ShEx or SHACL implementations can be based or compared. We have
also identified several challenges that we consider of relevance and on which we are
currently working on.

7 Acknowledgements

This work is partially funded by the Spanish Ministry of Economy and Competitive-
ness (Society challenges: TIN2017-88877-R)

References

1. Ora Lassila and Ralph R. Swick: Resource Description Framework (RDF) Model and Syntax
Specification. https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (1999)

2. Brickley, D., Guha, R.V., Layman, A.: Resource description framework (RDF) schemas.
https://www.w3.org/TR/1998/WD-rdf-schema-19980409/ (1998)

3. TimBray, Jean Paoli, C.M. Sperberg-McQueen, EveMaler and FranÃğoisYergeau: Extensible
Markup Language (XML) 1.0 (Fifth Edition. W3C Recommendation (2008)

4. Shudi Gao, C.M. Sperberg-McQueen and Henry S. Thompson: W3CXMLSchemaDefinition
Language (XSD) 1.1 Part 1: Structures. W3C Recommendation (2012)

5. van der Vlist, E.: Relax NG: A Simpler Schema Language for XML. O’Reilly, Beijing (2004)
6. Deborah L McGuinness and Frank van Harmelen: OWL Web Ontology Language Overview.

W3C Recommendation (2004)
7. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of rdf query languages. In

McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: The Semantic Web – ISWC 2004,
Berlin, Heidelberg, Springer Berlin Heidelberg (2004) 502–517

8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommenda-
tion (2008)

9. Berners-Lee, T.: Linked-data design issues. W3C design issue document (June 2006)
http://www.w3.org/DesignIssue/LinkedData.html.

28 J. E. Labra G. et al

10. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on
Semantic Web and Information Systems 5(3) (2009) 1–22

11. Labra Gayo, J.E., Prud’hommeaux, E., Solbrig, H.R., Rodríguez, J.M.Á.: Validating and
describing linked data portals using RDF shape expressions. In: Proceedings of the 1st
Workshop on Linked Data Quality co-located with 10th International Conference on Semantic
Systems, LDQ@SEMANTiCS 2014. Volume 1215 of CEURWorkshop Proceedings., CEUR-
WS.org (2014)

12. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to know about
blank nodes. Web Semantics 27(C) (August 2014) 42–69

13. Prud’hommeaux, E., Carothers, G.: RDF 1.1 turtle: Terse RDF triple language.
http://www.w3.org/TR/turtle/ (2014)

14. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013)
15. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: The

Semantic Web - ISWC 2015. Springer International Publishing (2015) 3–18
16. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and

transformation language. In: Proceedings of the 10th International Conference on Semantic
Systems, SEMANTICS 2014, ACM (2014) 32–40

17. Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellog, G.: Shape Expressions Language
2.0. https://shexspec.github.io/spec/ (April 2017)

18. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.: Semantics and validation of shapes schemas
for rdf. In: International Semantic Web Conference. (2017)

19. Prud’hommeaux, E., Baker, T.: ShapeMap Structure and Language.
https://shexspec.github.io/ShapeMap/ (July 2017)

20. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Proposed
Recommendation (June 2017)

21. Knublauch, H.: SPIN - Modeling Vocabulary. http://www.w3.org/Submission/spin-modeling/
(2011)

22. Ryman, A.G., Hors, A.L., Speicher, S.: OSLC resource shape: A language for defining
constraints on linked data. In Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S.,
eds.: Linked data on the Web. Volume 996 of CEUR Workshop Proceedings., CEUR-WS.org
(2013)

23. Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validating RDF Data.
Volume 7 of Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool Publishers LLC (sep 2017)

24. Labra Gayo, J.E.: Shaclex: Scala Implementation of ShEx and SHACL. DOI: 10.5281/zen-
odo.1400247 (2018) http://labra.github.io/shaclex.

25. Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Solbrig, H.R.:
Complexity and Expressiveness of ShEx for RDF. In: 18th International Conference on
Database Theory, ICDT 2015. Volume 31 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015) 195–211

26. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL. In:
Proceedings of the 17th International Semantic Web Conference. (October 2018)

27. Boneva, I.: Comparative expressiveness of ShEx and SHACL. Early working draft (March
2016)

28. Cabalar, P., Pearce, D., Valverde, A.: Stable reasoning. Journal of Applied Non-Classical
Logics 27(3-4) (2017) 238–254

29. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL (ex-
tended version). Technical Report KRDB18-01, KRDB Research Centre (October 2018)

30. Knublauch, H., Allemang, D., Steyskal, S.: SHACL advanced features 1.1. W3C Draft
Community Group Report (September 2018)

31. Deursen, D.V., Poppe, C., Martens, G., Mannens, E., deWalle, R.V.: XML to RDFConversion:
A Generic Approach. In Nesi, P., Ng, K., Delgado, J., eds.: 2008 International Conference
on Automated solutions for Cross Media Content and Multi-channel Distribution., Florence,
IEEE (November 2008) 138–144 doi: 10.1109/AXMEDIS.2008.17.

http://labra.github.io/shaclex

Challenges in RDF validation 29

32. Battle, S.: Gloze: XML to RDF and back again. In: Proceedings of the First Jena User
Conference, HP Labs, Bristol (May 2006)

33. Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Transforming valid XML documents into RDF
via RDF schema. In Abraham, A., Han, S.Y., eds.: Third International Conference on Next
Generation Web Services Practices (NWeSP 2007)., Seoul, IEEE (October 2007) 35–40 doi:
10.1109/NWESP.2007.23.

34. Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Exploiting XML schema for interpreting XML
documents as RDF. In van der Aalst, W., Pu, C., Bertino, E., Feig, E., Hung, P.C.K., eds.:
2008 IEEE International Conference on Services Computing (SCC’08). Volume 2., Honolulu,
IEEE (2008) 555–558 doi: 10.1109/SCC.2008.93.

35. Breitling, F.: A standard transformation from XML to RDF via XSLT. Astronomische
Nachrichten 330(7) (2009) 755–760 doi: 10.1002/asna.200811233.

36. Sperberg-McQueen, C.M., Miller, E.: On mapping from colloquial XML
to RDF using XSLT. In: Proceedings of Extreme Markup Languages®
2004, Montreal (2004) http://conferences.idealliance.org/extreme/html/2004/
Sperberg-McQueen01/EML2004Sperberg-McQueen01.html.

37. Berrueta, D., Labra Gayo, J.E., Herman, I.: XSLT + SPARQL: Scripting the semantic web with
SPARQL embedded into XSLT stylesheets. In Bizer, C., Auer, S., Aastrand, G., Tom Heath,
G., eds.: 4th Workshop on Scripting for the Semantic Web. Volume 368., Tenerife, CEUR-WS
(June 2008)

38. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and
XML with XSPARQL. Journal on Data Semantics 1(3) (2012) 147–185 doi: 10.1007/s13740-
012-0008-7.

39. Ermilov, I., Auer, S., Stadler, C.: CSV2RDF: User-driven CSV to RDF mass conversion
framework. In: Proceedings of the ISEM. Volume 13., Graz, Austria (2013) 04–06

40. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. W3C Recom-
mendation (September 2012)

41. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.:
RML: A Generic Language for Integrated RDFMappings of Heterogeneous Data. In: LDOW,
Seoul, Korea (2014)

42. Heyvaert, P., DeMeester, B., Dimou, A., Verborgh, R.: Declarative Rules for Linked Data Gen-
eration at your Fingertips! In: Proceedings of the 15th ESWC: Posters and Demos, Heraklion,
Greece (2018)

43. Garcia-Gonzalez, H., Labra-Gayo, J.E.: XMLSchema2ShEx: Converting XML validation to
RDF validation. Semantic Web (2018) In press: http://www.semantic-web-journal.
net/content/xmlschema2shex-converting-xml-validation-rdf-validation-1.

44. Pham, M.D., Boncz, P.: Exploiting emergent schemas to make rdf systems more efficient. In:
International Semantic Web Conference, Springer (2016) 463–479

45. Kim, G.H., Ko, S.K., Han, Y.S.: Inferring a relax ng schema from xml documents. In:
InternationalConference onLanguage andAutomataTheory andApplications, Springer (2016)
400–411

46. Klempa, M., Kozak, M., Mikula, M., Smetana, R., Starka, J., Švirec, M., Vitásek, M., Nečaskỳ,
M., Mlỳnková, I.H.: Jinfer: A framework for xml schema inference. The Computer Journal
58(1) (2015) 134–156

47. Rietveld, L., Beek, W., Hoekstra, R., Schlobach, S.: Meta-data for a lot of lod. Semantic Web
8(6) (2017) 1067–1080

48. Hasnain, A., Mehmood, Q., e Zainab, S.S., Hogan, A.: Sportal: Profiling the content of public
sparql endpoints. International Journal on Semantic Web and Information Systems (IJSWIS)
12(3) (2016) 134–163

49. Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R., Gómez-Pérez, A.: Loupe-an
online tool for inspecting datasets in the linked data cloud. In: International Semantic Web
Conference (Posters & Demos). (2015)

50. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets. In: LDOW.
(2009)

http://conferences.idealliance.org/extreme/html/2004/Sperberg-McQueen01/EML2004Sperberg-McQueen01.html
http://conferences.idealliance.org/extreme/html/2004/Sperberg-McQueen01/EML2004Sperberg-McQueen01.html
http://www.semantic-web-journal.net/content/xmlschema2shex-converting-xml-validation-rdf-validation-1
http://www.semantic-web-journal.net/content/xmlschema2shex-converting-xml-validation-rdf-validation-1

30 J. E. Labra G. et al

51. González, L., Hogan, A.: Modelling dynamics in semantic web knowledge graphs with formal
concept analysis. In: Proceedings of the 2018 World Wide Web Conference on World Wide
Web, International World Wide Web Conferences Steering Committee (2018) 1175–1184

52. Čebirić, Š., Goasdoué, F., Manolescu, I.: Query-oriented summarization of rdf graphs. Pro-
ceedings of the VLDB Endowment 8(12) (2015) 2012–2015

53. Fernández-Álvarez, D., García-González, H., Frey, J., Hellmann, S., Labra Gayo, J.E.: Infer-
ence of latent shape expressions associated to dbpedia ontology. In: International Semantic
Web Conference, Springer (2018)

54. Melo, A., Paulheim, H.: Learning SHACL Constraints for Validation of Relation Assertions
in Knowledge Graphs. In: Extended Semantic Web Conference ESWC. (2018)

55. Maali, F., Erickson, J., eds.: Data Catalog Vocabulary (DCAT). W3CRecommendation (2014)
56. Reynolds, D.: The Organization Ontology. W3C Recommendation (2014)
57. Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary. W3C Recommendation (2014)
58. Labra Gayo, J.E.: RDFShape: RDF Playground. DOI: 10.5281/zenodo.1412128 (2018) http:
//rdfshape.weso.es.

59. Ekaputra, F.J., Lin, X.: Shacl4p: Shacl constraints validation within protÃľgÃľ ontology editor.
In: 2016 International Conference on Data and Software Engineering (ICoDSE). (Oct 2016)
1–6

60. Gray, A.J.G.: Validata: A tool for testing profile conformance. In: Smart Descriptions &
Smarter Vocabularies (SDSVoc), Amsterdam, The Netherlands (November 2016)

61. Boston, B., Sampson, A., Grossman, D., Ceze, L.: Probability type inference for flexible
approximate programming. SIGPLAN Not. 50(10) (October 2015) 470–487

62. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus,M.: C-SPARQL:A continuous
query language for RDF data streams. International Journal of Semantic Computing 04(01)
(mar 2010) 3–25

63. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach
for unified processing of linked streams and linked data. In: The Semantic Web – ISWC 2011.
Springer Berlin Heidelberg (2011) 370–388

64. Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the
semantic sensor web. International Journal on Semantic Web and Information Systems 8(1)
(jan 2012) 43–63

65. Jean-Paul Calbimonte, ed.: RDF Stream Processing: Requirements and Design Principles.
W3C Draft Community Group Report (2016)

66. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A Logic-Based Framework for Analytic Reasoning
over Streams. Technical Report INFSYS RR-1843-17-03, Institute of Information Systems,
TU Vienna (October 2017)

67. Beck, H., Eiter, T., Folie, C.: Ticker: A system for incremental asp-based stream reasoning.
TPLP 17(5-6) (2017) 744–763

http://rdfshape.weso.es
http://rdfshape.weso.es

	Challenges in RDF validation
	J.E. Labra-Gayo et al
	Introduction
	RDF data model
	Validating RDF Data
	ShEx
	SHACL
	Comparing Shex and SHACL
	Language S
	From SHACL to S
	From ShEx to S

	Challenges
	Negation, recursion and semantics
	Shapes Libraries and reusability

	Shapes and the Semantic Web Stack
	Data transformation
	Schema inference
	Validation, modelling and visualization
	Validation usability
	Real time and streaming validation

	Conclusions and future work
	Acknowledgements
	References
	References

