
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbit20

Behaviour & Information Technology

ISSN: 0144-929X (Print) 1362-3001 (Online) Journal homepage: https://www.tandfonline.com/loi/tbit20

Applying big data and stream processing to the
real estate domain

Herminio García-González, Daniel Fernández-Álvarez, José Emilio Labra-
Gayo & Patricia Ordóñez de Pablos

To cite this article: Herminio García-González, Daniel Fernández-Álvarez, José Emilio Labra-
Gayo & Patricia Ordóñez de Pablos (2019): Applying big data and stream processing to the real
estate domain, Behaviour & Information Technology, DOI: 10.1080/0144929X.2019.1620858

To link to this article: https://doi.org/10.1080/0144929X.2019.1620858

Published online: 24 May 2019.

Submit your article to this journal

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbit20
https://www.tandfonline.com/loi/tbit20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0144929X.2019.1620858
https://doi.org/10.1080/0144929X.2019.1620858
https://www.tandfonline.com/action/authorSubmission?journalCode=tbit20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbit20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/0144929X.2019.1620858&domain=pdf&date_stamp=2019-05-24
http://crossmark.crossref.org/dialog/?doi=10.1080/0144929X.2019.1620858&domain=pdf&date_stamp=2019-05-24

Applying big data and stream processing to the real estate domain
Herminio García-González a, Daniel Fernández-Álvareza, José Emilio Labra-Gayo a and
Patricia Ordóñez de Pablosb

aDepartment of Computer Science, University of Oviedo, Oviedo, Spain; bDepartment of Business Administration, University of Oviedo, Oviedo,
Spain

ABSTRACT
In this paper, we propose an architecture that combines Big Data and Stream Processing which can
be applied to the Real Estate Domain. Our approach consists of a specialisation of Lambda
architecture and it is inspired by some aspects of Kappa architecture. As a proof of this solution,
we show a prototype developed following it and a comparison of the three architecture quality
models. Finally, we highlight the differences between the proposed architecture and similar ones
and draw some future lines following the present approach.

ARTICLE HISTORY
Received 28 February 2018
Accepted 11 May 2019

KEYWORDS
Big data; stream processing;
real estate; software
architecture

1. Introduction

Big data has supposed the appearance of a new set of
applications that could handle the new challenge of big
and growing datasets and offer new visualisations, ana-
lytics and, definitely, useful information to users
among different fields. These techniques combined
with new advances in hardware could open new possibi-
lities that in the past could not been reached due to state-
of-the-art limitations.

But new challenges, linked to the big amount of data,
have emerged. One of them is the real-time data. Real-
time data has the characteristic of changing in short
periods of time, i.e. it is data that quantifies something
as it happens. This kind of data is also growing due to
advances in Internet of Things (IoT) (Wingerath et al.
2016) where a lot of sensors are capturing environmental
data and publishing it through the Internet.

One of the fields that are taking benefit of this devel-
opment on big data technologies and techniques is real
estate business. Real estate business produces a lot of
information, including transactions, prices, new con-
structions, etc. Exploitation of this data is crucial to
make a difference in real estate domain. Furthermore,
being capable of predicting some indicators based on
existing data could be the next big step in this field and
a current research interest among the community.

In order to achieve these purposes, there is the need of
solutions that can handle the existing and upcoming real
estate data. In order to serve to this purpose, in this paper
we present a specialisation of Lambda architecture
specifically designed for real estate domain called

Adaptation of Lambda Architecture for Real Estate
Applications (Alarea).

Thus, the structure of this paper is as follows: Section
2 describes related work. In Section 3, we describe the
proposed architecture and in Section 4, we make a com-
parison of the architecture quality models. We describe
our prototype implementation in Section 5. In Section
6, we establish a discussion about the benefits of the pro-
posed architecture compared with similar architectures.
Finally, in Section 7 we present some conclusions and
future work.

2. Related work

2.1. Big data and streaming

Over the past 25 years, data has dramatically increased
in various fields (Chen, Mao, and Liu 2014). Activity in
social networks or sensors lectures linked to IoT have
contributed to this data explosion (Marz and Warren
2015; Rao and Ali 2015). The term big data emerges
as a way to describe those huge datasets which cannot
be handled by just using classic batch approaches.
There are some distinguishing features that define the
universe of big data applications. These features were
originally three and they were known as the 3Vs
model (Laney 2001). Nowadays, this model has evolved
to a 5Vs one (Demchenko et al. 2013), which is com-
posed by:

. Volume: It refers to the huge amount of data that they
handle.

© 2019 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Herminio García-González herminiogg@gmail.com

BEHAVIOUR & INFORMATION TECHNOLOGY
https://doi.org/10.1080/0144929X.2019.1620858

http://crossmark.crossref.org/dialog/?doi=10.1080/0144929X.2019.1620858&domain=pdf&date_stamp=2019-05-23
http://orcid.org/0000-0001-5590-4857
http://orcid.org/0000-0001-8907-5348
mailto:herminiogg@gmail.com
http://www.tandfonline.com

. Velocity: Systems that work with big data usually
should produce an output in a certain time frame,
which may be a real-time answer.

. Variety: Many applications have to deal not just with
enormous volumes of bytes but also to process infor-
mation of different formats or types (messages, videos,
structured data, …) produced by different sources
(sensors, social networks, RSS of news, etc.).

. Veracity: False or corrupted information may lead to
wrong conclusions and failed applications. Veracity
is incorporated to the 3V to emphasise the necessity
of developing applications that consider security
aspects in order to ensure the quality and confidenti-
ality of the data.

. Value: This V was incorporated to the original model
of 3Vs in order to highlight the necessity of obtaining
valuable pieces of information among the entire data-
set. In Marz and Warren (2015), the difference
between raw data (pre-analysis) and valuable infor-
mation (post-analysis) is established.

Hardware systems have evolved in order to satisfy
those needs, being specially significant the apparition
of Solid State Disk (SSD) technology to improve the
capacity and performance of memory-level data analysis
(Chen, Mao, and Liu 2014). At the same time, software
architectures specially designed to be used in big data
scenarios have been purposed, looking for high levels
of scale-out, elasticity and availability (Katal, Wazid,
and Goudar 2013). Probably one of the most significant
contributions in this field is MapReduce model. Initially
proposed by Google (Dean and Ghemawat 2008),
MapReduce was widely adopted by the community
once it became an open source project with the
implementation of Apache Hadoop Foundation (2011).
The model proposes a simple scheme based on two func-
tions (Map and Reduce, which should be provided by the
developer) which allows for an easy horizontal scaling.

Real-time or pseudo-real-time systems raise extra
technological challenges that cannot be handled by
purely batch approaches. These scenarios require sys-
tems able to update their algorithms with the arrival of
new data, to work within the required time constraints
and to deal with memory limitations (Ramírez-Gallego
et al. 2017). In order to fulfil these requirements, stream
processing emerges as an alternative to batch processing.

Although stream processing is frequently associated
to big data applications, the idea of computing data in
motion is not new. We can find early examples of similar
approaches in some Database Management Systems
(DBMS) (Terry et al. 1992) or Complex Event Processing
(CEP) engines (Abadi et al. 2003, 2005). In big data scen-
arios, streams are frequent when processing user-

generated content or lectures from sensors, wearables
or any device associated to IoT (Wingerath et al. 2016).

Real-time systems in big data should produce nearly
immediate responses based on huge amounts of infor-
mation, which require maximum performance and mini-
mum latency. In order to reach such low latencies,
stream processing methods need to reduce the complex-
ity of the raw data (García, Luengo, and Herrera 2016),
with the cost of just being able to compute small pieces
of data each time. A purely stream-based approach can-
not use the potential knowledge reachable by computing
the whole dataset (Vanhove et al. 2016). In order to take
advantage of both approaches (batch and stream),
Lambda architecture is proposed (Marz and Warren
2015). Lambda describes two layers to make parallel
and different computations of the same input data. By
that, an application which implements Lambda is able
to offer real-time feedback as well as pieces of infor-
mation not so up-to-date obtained with batch processes
of higher latencies.

Despite the general acceptance of Lambda architec-
ture (Perera and Suhothayan 2015), this solution has
been criticised due to the need of maintaining two
code bases for the separate processing layers (Kreps
2014). Kappa architecture is suggested as an alternative,
consisting in a simplification of Lambda by removing
the batch processing layer. Nevertheless, while this
approach effectively tackles the problem of maintaining
two code bases, it also restricts some analytic results
that just can be reached by processing the source dataset
as a whole.

Several stream processing systems have been provided
in the last years, including Storm (Foundation 2016b),
Trident (Foundation 2016c), Samza (Foundation
2016a) and Spark Streaming Foundation (2014). Spark
streaming is linked to the Spark framework (Zaharia
et al. 2012), which consists of a batch-processing frame-
work, sometimes considered the successor of Hadoop.
This combination of batch and streaming processing
makes Spark a great option for hybrid approaches such
as Lambda or Alarea. A comparison of all these systems
is provided in Wingerath et al. (2016).

2.2. Real Estate applications

Big data analytics have been successfully applied in sev-
eral Real Estate applications to support decisions of both
buyers and sellers. In general, these systems have two
main aims:

. Decision support, such as Dujmović et al. (2013) and
Montes et al. (2015). Based on soft computing models,
they assist users’ choices based on their preferences,

2 H. GARCÍA-GONZÁLEZ ET AL.

profile and diverse available information. They are
more oriented to buyers.

. Predictions, such as Trawinski (2013) and Rafiei and
Adeli (2015). They compute different types of data
with machine-learning algorithms in order to develop
predictive models about the evolution of supply,
demand and pricing. They are more oriented to
sellers.

Some current Real Estate applications require the use
of techniques related to big data due to the massive
amount of data with potential to be exploited in this
kind of market (Du, Li, and Zhang 2014). It is not just
about computing supply and demand and users prefer-
ences, but many other types of information may be
used as parameters to develop accurate models. In Du,
Li, and Zhang (2014), a list of Chinese companies
which have analysed different types of data for the real
Estate market is shown, including but not limited to
land resources and owners personal information
(Vanke), owners health condition (Shimao Group), or
even drivers’ paths obtained via Global Positioning Sys-
tem (Windermere).

Some of the potential information processed in real
estate models may be exposed and computed via streams.
In Trawinski (2013), a predictive model based on correc-
tion of aged models via stream processing is presented.
In this case, the authors do not look for a system with
real-time responses, but they propose a model based in
the computation of real-time events. An insightful
example of a relevant stream-like notion considered in
some real estate models is sentiment analysis (Marcato
and Nanda 2016). Several works have successfully
employed sentiment indexes to improve predictive
models in house pricing, such as the NAHB/Wells
Fargo Housing Market Index (HMI), based on a survey
of home builders, or the Reuters/University of Michigan
Index of Consumer Sentiment (Nanda 2007; Dua 2008;
Jin, Soydemir, and Tidwell 2014; Ling, Naranjo, and
Scheick 2014). While those works use sentiment
measures based on surveys, current state-of-art senti-
ment analysis allows for the development of price predic-
tion models using real-time opinion mining in more
stream-like sources, such as search engines or social
media (Smailović, Grčar, and Lavrač 2014; Zhang,
Zhao, and Xu 2016). In Wu and Brynjolfsson (2015),
the authors find evidence of correlation between search
terms and house pricing variation. They also argue that
real estate market is a good context to apply predictive
models based on on-line sentiment analysis. This is
because events viralised through social media with
short-term consequences (a few days) tend to have a
softer impact over consumers’ criteria, since the

transactions in real estate market use to require long
decision times.

The potential of utilising this data in real estate
models motivates the development of architectures
such as Alarea, useful for handling big data sources
and streams of information.

3. Architecture proposal

3.1. Lambda architecture

Lambda architecture (Marz and Warren 2015) is an
architecture proposed by Nathan Marz that aims to pro-
cess big data sources and perform the commended tasks
by minimising the latency of this kind of works.

For this purpose, lambda architecture is splitted into
three layers that are as follows:

. Batch layer: This layer is responsible for making trans-
formations, calculations and aggregations that are
required through the existing data on the master data-
set. Likewise of integrating the new data that arrives to
the architecture.

. Serving layer: This layer should generate different
views for the desired queries. These views can be pre-
computed and cached in order to speed the process of
querying.

. Speed layer: This layer arise as a solution when batch
processes suffer from latency or when new data is
coming in short periods of time. As we mentioned,
batch processes could take long time to refresh data
on batch views. Therefore, speed layer makes use of
real-time technologies in order to complete queries
with the most up-to-date data.

Combining these two paradigms: batch layer and
speed layer, lambda architecture offers a solid big data
approach with the combination of no latency and up-
to-date data (Figure 1).

3.2. Kappa architecture

Kappa architecture (Kreps 2014) was proposed by Jay
Kreps as a simplification of Lambda architecture. The
proposal of this architecture aimed to remove the
batch layer used on Lambda architecture. Instead of
using a master dataset, all operations will be based on
the speed layer and, therefore, in an append-only immu-
table log.

Serving layer is maintained but instead of making
migrations of databases each time that new data come,
new versions of the database are made by taking the
desired information from the immutable log.

BEHAVIOUR & INFORMATION TECHNOLOGY 3

3.3. Alarea architecture

Our proposal of architecture materialise in the Alarea
architecture. This architecture is a specialisation of
Lambda architecture and takes some ideas from the
Kappa architecture. Alarea architecture aims to bring
the big amount of data stored in public, governmental
and social media platforms to join them together in a
unique source of information in order to offer them to
possible consumers in a usable and more convenient
form. Alarea architecture gathers two different forms of
data: real-time data and non-real-time data. Non-real-
time data includes sources of information that are not
variable along short periods of time and therefore
could be managed using batch processing techniques.
Meanwhile, real-time data includes sources of infor-
mation that are variable through a little time window
portion, i.e. they are changing continually.

Therefore, to fulfil the requirements proposed in the
previous paragraph, we propose an architecture and a
set of technologies that can handle these two types of
data. Moreover, this architecture not only integrates het-
erogeneous data, it also integrates heterogeneous timing
data.

Alarea architecture combines two styles of processing,
as we introduced earlier: batch processing and real-time
processing. With batch processing, this architecture is
capable of handling big amount of data without the pro-
blem of getting stuck or showing a high latency effect.
Using the advances made in big data technologies, it
can offer a fast, reliable and parallelised processing of
non-real-time data. However, real-time data is a new
paradigm of data that architectures should be aware of
processing. Alarea architecture uses advances in real-

time processing to handle and gather also this kind of
data.

Alarea presents two main layers: batch layer and real-
time layer. Batch layer is aware of processing data that
could be stored in all kinds of non-real-time data formats
(e.g. JSON, XML, Excel files, CSV, JDBC, etc.). This layer
is responsible for parsing, transforming and storing the
data. In the other hand, real-time layer is aware of pro-
cessing data that is served as real-time data and therefore
is changing in a little window time. As well as with batch
layer, real-time data is also responsible for transform-
ations that could be delegated as part of this process.

Batch layer is composed by non-real-time data
sources, the batch processor and the distributed persist-
ence. Therefore, the batch processor will make the
necessary transformations from the non-real-time
sources to the distributed persistence. The main goal of
batch processor is to reach this conversion in a distribu-
ted way, that is, it should increase horizontally with a
cluster of computers instead of vertically, with more
hardware in a single machine.

Real-time layer is composed by real-time sources, the
real-time processor and the distributed event queue.
Therefore, real-time processor will make the necessary
transformations from the sources to the distributed
event queue. By its side, distributed event queue presents
a publish subscribe architecture that must handle publi-
cation of new events of changed data and subscription
and notifications of these events to all the subscribers
into the topic. This layer should be also parallelised in
order to make it horizontally growable as we stated
with batch layer.

Finally, the integrator should consume data from both
layers and create new views from the received data. It

Figure 1. Diagram of lambda architecture. Source: http://lambda-architecture.net

4 H. GARCÍA-GONZÁLEZ ET AL.

could use an auxiliary repository in order to cache the
generated views. A diagram of this architecture can be
seen in Figure 2.

4. Quality model

In this section, we describe the quality model of the three
in-study architectures by means of a quality attributes
comparison. For simplicity, the serving layer has not
been taking into account as the three architectures
have this layer in common. The selected quality attri-
butes are:

. Recoverability: Ability of a system to recover to a
stable point once a failure has been produced.

. Fault tolerance: Property from which a system can
continue working when a component has failed.

. New data gap: Measurement of the waiting time from
when a new data is received until it is completely
available.

. Hardware consumption: Amount of required hard-
ware resources needed by an architecture to operate
correctly.

. Modifiability: Property of an architecture that allows
the modification of a component using the minimum
time possible.

In Table 1, we have detailed our evaluation for each
quality attribute in each architecture which was based
in the following criteria.

4.1. Recoverability

Recoverability can be defined as the ability that a system
has to recover from a failure and to restore to a stable
point. From this point of view, Lambda architecture pre-
sents high recoverability due to its double layer, batch
layer and speed layer, which provides two sources of
redundant information. In the case of Kappa architec-
ture, the only existence of a speed layer makes that all
the knowledge is hosted in the so-called ‘source of
truth’ which, if it is not replicated, can deal to the loss
of information. However, the append-only system can
also excel the reconstructions of the produced events.
Alarea, from its side, suffers from the same problem as
Kappa architecture which makes that, if not being repli-
cated by default, it could lead to the loss of information.
Nonetheless, it can take benefit from the append-only log
in the streaming layer and also batch layer can be recom-
puted from existing sources. Therefore, recoverability is
rated as high in Lambda architecture whereas in Kappa
architecture and Alarea is rated as medium.

4.2. Fault tolerance

This is the ability of a system to continue working when
one of its components has failed. Lambda architecture,
thanks to its double layer design, can deal with failures
in one of its components. However, if this is produced
in the stream layer the latency will be increased. There-
fore, it can be labelled as medium. Kappa architecture,
due to its append-only log design, can deal with the
reconstruction of the events produced in the system.

Table 1. Quality attributes comparison.

Quality attributes
Lambda
architecture

Kappa
architecture Alarea

Recoverability H M M
Fault tolerance M M M
New data gap L H M
Hardware
consumption

H M M

Modifiability L H H

H, High; M, Medium; L, Low.

Figure 2. Proposed architecture diagram.

BEHAVIOUR & INFORMATION TECHNOLOGY 5

Although, this kind of reconstruction can increase the
latency as well. Hence, it can be labelled as medium.
The case of Alarea is similar to the Kappa architecture
where the data can be reconstructed from the append-
only log in the streaming layer and from the recomputa-
tion in the batch layer. Therefore, it can be labelled as
medium.

4.3. New data gap

New data gap is the scenario when new data arrives to
the architecture until it is fully queryable. Lambda
architecture is designed with this quality attribute in
mind, due to its double layer new data is aggregated
to the views by means of the speed layer while it is pro-
cessed by the batch layer. Therefore, the latency is very
low. In the case of Kappa architecture, the latency will
be derived from the recomputation of the views
which, depending on its complexity, could take more
or less time. In Alarea, the recomputation is needed
for both layers and it could take some time as in
Kappa architecture. However, in this architecture
batch layer is only meant for data with low frequency
change rate and recomputation will be only made con-
tinuously in the streaming layer. Therefore, the fastest
recomputation is made on Lambda architecture whereas
Kappa architecture and Alarea suffer from similar
latencies.

4.4. Hardware consumption

Hardware consumption is a measure that gives an
impression of which hardware is required for a concrete
architecture. In Lambda architecture, every time new
data is received the batch and the streaming layer must
do a recomputation. Therefore, the hardware consump-
tion in Lambda architecture can be labelled as high. In
Kappa architecture, the only existence of the stream
layer oblies to make a recomputation of the views each
time new data is received. In contrast to the Lambda

architecture, only one layer has the computation. There-
fore, the hardware consumption can be labelled as med-
ium. In Alarea, the recomputation is made only in the
layer affected depending on the kind of new data. This
is more or less the same scenario as in the Kappa archi-
tecture where only one layer recomputation is needed.
Therefore, it can be labelled as medium.

4.5. Modifiability

Modifiability is the property of an architecture to be
modified within the lowest time possible. In Lambda
architecture, a modification in a batch layer com-
ponent would require to modify its counterpart com-
ponent in the speed layer. Therefore, it can be
labelled as low. In Kappa architecture, a modification
is isolated to the only existing speed layer. Therefore,
it can be labelled as high. In the case of Alarea archi-
tecture, the modification will be isolated to one of the
layers depending on the kind of data. Therefore, it can
be labelled as high.

5. Prototype implementation

For the sake of architecture validation, we have devel-
oped a small prototype that is based on the proposed
one. This prototype is intended for real estate data pro-
cessing and viewing, and it uses both real-time data
and non-real-time data.

Batch layer uses data from Spanish Ministry of Devel-
opment (2004-2016) which represents the values of real
estate transactions on different categories. These files are
in Excel format and they are processed, transformed and
persisted by the batch layer.

The main components of the batch layer are:

. Spark + Hive: Spark is responsible for doing the trans-
formation and persistence of data into Hive technol-
ogy. Spark takes the data in Excel format files,
transform and aggregate it into tables to persist as

Figure 3. Diagram of the architecture with the proposed solution.

6 H. GARCÍA-GONZÁLEZ ET AL.

Hive data tables. Once they are persisted into Hive
they can be queried using JDBC connection and
SQL as the query language.

. Scala API: This API is responsible for taking the data
from the Hive’s JDBC interface and expose different
queries in REST API format. It is also responsible

for receiving the streams from the real-time layer as
we will explain ahead.

Real-time layer uses data from Twitter real-time API
in order to enrich the batch processed data with users
interaction in this social media platform. Tweets are

Figure 4. Prototype web page. Available at: http://hazelnut.weso.es/siginfo.

BEHAVIOUR & INFORMATION TECHNOLOGY 7

processed and delivered to different clients in real time as
they occur.

The main components of the real time layer are:

. Python Transformer: This is responsible for bringing
the data from Twitter real-time API to the event
queue middleware. Transformations are made here
and then transferred to the event queue.

. Apache Kafka: Kafka is a distributed event queue that
aims to connect different sources and consumers of
information through a distributed and fault tolerant
system.

. Scala API: As we mentioned with the batch layer,
Scala API will collect real-time events and expose
different aggregated views to clients.

In order to show all this information to clients
through the Internet, we implemented a web page built
on top of HTML + CSS + JS, using Google Maps for geo-
graphical information, AJAX to dynamically change and
query data from the Scala API and Server-Sent Events for
sending the information from the API to the client web
page (Figure 3). Figure 4 shows howmentioned web page
looks like.

6. Discussion

In the previous sections, we presented the proposed
architecture and a short description of Lambda architec-
ture and Kappa architecture.

Our proposed architecture is a specialisation of
Lambda architecture in the terms of: it is intended for
big data, it has a batch layer and a streaming layer,
and it combines real-time data with non-real-time
data. However, Lambda architecture is meant, mainly,
for getting information from the same source. While
our one is intended, from the very beginning, to mix
and integrate heterogeneous data sources. This is pre-
sent not only in the existence of various data sources
(see Figure 2) but also in the existence of an integrator
component.

Inspiration from Kappa architecture comes in the
real-time layer – or streaming layer – where data is trans-
ferred and persisted into an append-only immutable log
and data is taken from there.

Kappa architecture mainly focus on real-time tech-
nologies as a way of dealing with all kind of data. This
approach makes the architecture more simple but it
could suffer from complexity in the data management
due to the dependency on the append-only immutable
log.

Moreover, while Lambda architecture excels in com-
bining two paradigms for data processing of the same

sources, Alarea brings the same foundation for hetero-
geneous data sources, giving developers the opportunity
to decide which layer is better for their purposes. In the
other hand, Kappa architecture, and its only streaming
layer, could restrict some of the analytics that can be
done by the batch layer. Instead, Alarea gives the option
for one type of processing or for using both of them at
the same time.

With this combination of both layers, the architecture
copes with two kind of data and is capable of treating it
no matter the timing that they present. This feature
excels the flexibility and adaptability of the presented
architecture.

7. Conclusion and future work

In this paper, we have presented an architecture for deal-
ing with big data and real-time data in the real estate
domain. The solution combines batch processing and
real-time processing in two different layers. Although
there are similar architectures to solve these problems,
we stated the main differences and advantages of our sol-
ution and demonstrated with a quality model study and a
prototype the usefulness of Alarea architecture.

However, future work should be encouraged to refine
and improve this work. We identify the development of a
more generic prototype, the industrial exploitation of the
presented prototype, machine learning approaches and
validation of the architecture as future lines that could
be followed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work has been funded by a collaboration with the Izertis
company funded by IDEPA with reference number PID-1-II-
15-006 and dossier number IDE/2015/000694.

ORCID

Herminio García-González http://orcid.org/0000-0001-
5590-4857
José Emilio Labra-Gayo http://orcid.org/0000-0001-8907-
5348

References

Abadi, D. J., Y. Ahmad, M. Balazinska, U. Cetintemel, M.
Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A.
Rasin, and E. Ryvkina. 2005. “The Design of the Borealis
Stream Processing Engine.” In Cidr. Vol. 5, 277–289.

8 H. GARCÍA-GONZÁLEZ ET AL.

http://orcid.org/0000-0001-5590-4857
http://orcid.org/0000-0001-5590-4857
http://orcid.org/0000-0001-8907-5348
http://orcid.org/0000-0001-8907-5348

Abadi, D. J., D. Carney, U. Çetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
2003. “Aurora: A New Model and Architecture for Data
Stream Management.” International Journal on Very Large
Data Bases 12: 120–139.

Chen, M., S. Mao, and Y. Liu. 2014. “Big Data: A Survey.”
Mobile Networks and Applications 19: 171–209.

Dean, J., and S. Ghemawat. 2008. “MapReduce: Simplified
Data Processing on Large Clusters.” Communications of
the ACM 51: 107–113.

Demchenko, Y., P. Grosso, C. De Laat, and P. Membrey. 2013.
“Addressing Big Data Issues in Scientific Data
Infrastructure.” In 2013 International Conference on
Collaboration Technologies and Systems (CTS), 48–55. IEEE.

Dua, P. 2008. “Analysis of Consumers—Perceptions of Buying
Conditions for Houses.” The Journal of Real Estate Finance
and Economics 37: 335–350.

Du, D., A. Li, and L. Zhang. 2014. “Survey on the Applications
of Big Data in Chinese Real Estate Enterprise.” Procedia
Computer Science 30: 24–33.

Dujmović, J., G. De Tré, N. Singh, D. Tomasevich, and R.
Yokoohji. 2013. “Soft Computing Models in Online Real
Estate.” Advance Trends in Soft Computing, WCSC, 77–91.

Foundation, A. S. 2011. Apache Hadoop. Accessed 11 May
2017. http://hadoop.apache.org/

Foundation, A. S. 2014. Spark Streaming. Accessed 11 May
2017. http://spark.apache.org/streaming/.

Foundation, A. S. 2016a. Samza. Accessed 11 May 2017. http://
samza.apache.org/.

Foundation, A. S. 2016b. Storm. Accessed 11 May 2017. http://
storm.apache.org/.

Foundation, A. S. 2016c. Trident. Accessed 11 May 2017.
http://storm.apache.org/releases/1.0.0/Trident-API-
Overview.html.

García, S., J. Luengo, and F. Herrera. 2016. “Tutorial on
Practical Tips of the Most Influential Data Preprocessing
Algorithms in Data Mining.” Knowledge-Based Systems 98:
1–29.

Jin, C., G. Soydemir, and A. Tidwell. 2014. “The US Housing
Market and the Pricing of Risk: Fundamental Analysis
and Market Sentiment.” Journal of Real Estate Research
36: 187–220.

Katal, A., M. Wazid, and R. Goudar. 2013. “Big Data: Issues,
Challenges, Tools and Good Practices.” In 2013 Sixth
International Conference on Contemporary Computing
(IC3), 404–409. IEEE.

Kreps, J. 2014. “Questioning the Lambda Architecture.”
Online article, July.

Laney, D. 2001. “3d Data Management: Controlling Data
Volume, Velocity and Variety.” META Group Research
Note 6: 70.

Ling, D. C., A. Naranjo, and B. Scheick. 2014. “Investor
Sentiment, Limits to Arbitrage and Private Market
Returns.” Real Estate Economics 42: 531–577.

Marcato, G., and A. Nanda. 2016. “Information Content and
Forecasting Ability of Sentiment Indicators: Case of Real
Estate Market.” Journal of Real Estate Research 38: 165–203.

Marz, N., and J. Warren. 2015. “Big Data: Principles and Best
Practices of Scalable Realtime Data Systems.” Manning.

Montes, R., A. M. Sánchez, P. Villar, and F. Herrera. 2015. “A
Web Tool to Support Decision Making in the Housing
Market using Hesitant Fuzzy Linguistic Term Sets.”
Applied Soft Computing 35: 949–957.

Nanda, A. 2007. “Examining the NAHB/Wells Fargo Housing
Market Index (HMI).” Housing Economics.

Perera, S., and S. Suhothayan. 2015. “Solution Patterns for
Realtime Streaming Analytics.” In Proceedings of the 9th
ACM International Conference on Distributed Event-Based
Systems, 247–255. ACM.

Rafiei, M. H., and H. Adeli. 2015. “A Novel Machine Learning
Model for Estimation of Sale Prices of Real Estate Units.”
Journal of Construction Engineering and Management 142:
04015066.

Ramírez-Gallego, S., B. Krawczyk, S. García, M. Woźniak, and
F. Herrera. 2017. “A Survey on Data Preprocessing for Data
Stream Mining: Current Status and Future Directions.”
Neurocomputing 239: 39–57.

Rao, K. V., and M. A. Ali. 2015. Survey on big data and appli-
cations of real time big data analytics.

Smailović, J., M. Grčar, and N. Lavrač. 2014. “Stream-based
Active Learning for Sentiment Analysis in the Financial
Domain.” Information Sciences 285: 181–203.

Spanish Ministry of Development. 2004-2016. Real Estate
Transactions in Spain. Accessed 11 May 2017. http://
www.fomento.gob.es/BE2/?nivel=2andorden=34000000

Terry,D.,D.Goldberg,D.Nichols, andB.Oki. 1992.Continuous
Queries Over Append-only Databases. Vol. 21. ACM.

Trawinski, B. 2013. “Evolutionary Fuzzy System Ensemble
Approach to Model Real Estate Market based on Data
Stream Exploration.” Journal of Universal Computer
Science 19: 539–562.

Vanhove, T., G. Van Seghbroeck, T.Wauters, B. Volckaert, and
F. De Turck. 2016. “Managing the Synchronization in the
Lambda Architecture for Optimized Big Data Analysis.”
IEICE Transactions on Communications 99: 297–306.

Wingerath, W., F. Gessert, S. Friedrich, and N. Ritter. 2016.
“Real-time Stream Processing for Big Data.” Information
Technology 58: 186–194.

Wu, L., and E. Brynjolfsson. 2015. “The Future of Prediction:
How Google Searches Foreshadow Housing Prices and
Sales.” In Economic Analysis of the Digital Economy, 89–
118. University of Chicago Press.

Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica. 2012.
“Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing.” In
Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, 2–2. USENIX
Association.

Zhang, L., J. Zhao, and K. Xu. 2016. “Emotion-based Social
Computing Platform for Streaming Big-data: Architecture
and Application.” In 2016 13th International Conference
on Service Systems and Service Management (ICSSSM), 1–
6. IEEE.

BEHAVIOUR & INFORMATION TECHNOLOGY 9

http://hadoop.apache.org/
http://spark.apache.org/streaming/
http://samza.apache.org/
http://samza.apache.org/
http://storm.apache.org/
http://storm.apache.org/
http://storm.apache.org/releases/1.0.0/Trident-API-Overview.html
http://storm.apache.org/releases/1.0.0/Trident-API-Overview.html
http://www.fomento.gob.es/BE2/?nivel=2andorden=34000000
http://www.fomento.gob.es/BE2/?nivel=2andorden=34000000

	Abstract
	1. Introduction
	2. Related work
	2.1. Big data and streaming
	2.2. Real Estate applications

	3. Architecture proposal
	3.1. Lambda architecture
	3.2. Kappa architecture
	3.3. Alarea architecture

	4. Quality model
	4.1. Recoverability
	4.2. Fault tolerance
	4.3. New data gap
	4.4. Hardware consumption
	4.5. Modifiability

	5. Prototype implementation
	6. Discussion
	7. Conclusion and future work
	Disclosure statement
	ORCID
	References

