
DOI: 10.4018/IJSWIS.2017100103

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

MERA:
A Musical Entities Reconciliation Architecture
Based on Semantic Technologies
Daniel Fernández-Álvarez, Department of Computer Science, University of Oviedo, Oviedo, Spain

Jose Emilio Labra Gayo, University of Oviedo, Oviedo, Spain

Daniel Gayo-Avello, Department of Computer Science, University of Oviedo, Oviedo, Spain

Patricia Ordóñez de Pablos, Department of Business Administration. Faculty of Economics and Business, University of
Oviedo, Oviedo, Spain

ABSTRACT

In this paper, the authors describe Musical Entities Reconciliation Architecture (MERA), an architecture
designed to link music-related databases adapting the reconciliation techniques to each particular case.
MERA includes mechanisms to manage third party sources to improve the results and it makes use of
semantic technologies, storing and organizing the information in RDF graphs. They have implemented
a prototype of their approach and have used it to link sources with different levels of data quality. The
prototype has been effective in more than 94% of the cases under the conditions of their experiments.
The authors have also compared their prototype with a well-known music-specialized search engine,
outperforming the search results in the two experiments that they performed.

Keywords
Adaptable Architecture, Collective Matching, Entity Reconciliation, Music Metadata, RDF Graph, Record
Linkage, Semantic Search

1. INTRODUCTION

Although the problem of entity reconciliation has been largely studied, it remains a challenging issue.
The proliferation of large databases with potentially repeated entities across the World Wide Web
drives into an interest to find methods to detect duplicated entries when no reliable unique identifiers
are available. In this paper, we provide an architecture for the specific task of linking records of
musical databases. The Musical Entities Reconciliation Architecture (MERA) discovers links between
elements of different databases that represent the same real-world entity in the music domain. Our
approach is able to adapt the linkage process to the different content and nature of each database,
letting the user configure different reconciliation algorithms for different attributes or type of entities.

Examples of fields usually contained in musical databases are titles, artist names, albums, genres,
etc. The task of recognizing these kinds of contents is strongly connected to the record linkage problem,
since it consists of the detection of records or entries referring to the same real-world entity. However,
we have designed MERA with the assumption that the type of metadata linked to the music world
presents a certain number of peculiarities that should be considered. For instance, there are many

42

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

43

specific cases of correct forms, or at least recognizable forms, in which we could express the name
of an artist, including but not limited to:

•	 Artistic names vs civil names, e.g., “Stefani Joanne Angelina Germanotta” or “Lady Gaga”;
•	 Naming conventions, e.g., “The Beatles” or “Beatles, the”;
•	 Official or widely extended alias, e.g., “The King of Rock” instead of “Elvis Presley”;
•	 Mixings between civil names and artistic names, e.g., “Shakira”, “Shakira Isabel Mebarack

Ripoll”, “Shakira Mebarack”, etc.;
•	 Acronyms, e.g., “System of a down” or “SOAD”;
•	 Usual misspellings, e.g., “Bruce Springsting” instead of “Bruce Springsteen”;
•	 Name of an artist linked to a song that should actually be linked to a group, e.g., “Michael

Jackson” instead of “The Jackson Five”.

Issues such as misspellings or acronyms are not specific of music-related metadata, and they can
be found in databases or datasets of different nature. However, issues such as the existence of both
artistic and civil name are exclusive of artists’ specification. By contrast, when trying to conciliate
other types of musical entities, e.g., songs, a different set of specific problems related to the nature
of songs may appear. An example could be the management of the word “feat” (or variations such
as “ft.”, “featuring”, etc.). When “feat” appears in a song title, it usually means that in that title there
is a name of a collaborator included. Both “feat” and its following words may be discarded from the
song name itself. However, they can possibly be computed in some other way since they can become
very useful information.

In noisy or hand-made databases it is also possible to find extra words at the beginning or at the
end of a song title. For instance, sequences linked to the radio program in which a song was played
or to the place of a live performance. This may become even more troublesome in especially noisy
databases such as those formed by the compilation of standalone audio files’ metadata. When handling
audio files wrongly labeled, it is possible to find titles that in fact contain all the associated metadata
(artist, date, genre...) in a single field.

Another example of a musical concept that presents associated issues due to its special nature
is the genre. When dealing with genres, it could happen that the same song is specified as pop in a
database, as rock in a second one and as pop-rock in a third one. Sometimes, the same genre is even
named with different forms that are in fact expressing the same reality.

Our assumption is that finding general reconciliation rules between two databases is far
from being trivial, as well as finding appropriate rules or strategies to conciliate each field of
those databases. The result could drastically change if it is compared to the rules that may be
used when handling a different pair of sources. Trying to establish general rules could drive
into an unnecessary number of failures (false positives/negatives) when identifying two records
of different databases as forms of the same real entity. The inference of reconciliation rules
in a particular case through the use of training data may be handy for covering issues such as
misspellings, naming conventions or even noisy prefixes/suffixes, but they cannot handle cases
in which the strings that represent the entities do not have common characters (example: “The
King of Rock” should be recognized as “Elvis Presley”).

Our main contribution in this paper is the specification of MERA architecture. MERA tries
to adapt to all those scenarios using graph concepts and semantic web technologies. Our approach
turns the information of one of the target databases into a custom RDF graph G containing all the
information (name variations, alias, common misspellings, etc.) of every database record, as well

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

44

as the relations between those records. The records of the second database are turned into complex
queries that will be launched against G. The result of each query is the list of the most similar nodes
to the target record according to:

•	 String distance based functions;
•	 Use of all the alternative identifying forms of a concept;
•	 Graph navigation in order to detect shared associated entities for disambiguation purposes.

MERA can use different reconciliation algorithms for each pair of databases and even for each
field of those databases, trying to cover all the issues linked to the nature of the data. It is able to
reach better results with more prior knowledge of the data issues, since the user is the agent that
specifies the algorithms to use. MERA allows configuration about different properties that should
be considered, the reconciliation algorithms to apply in each case and the threshold of similarity that
a result must reach to be accepted. It also provides mechanisms to incorporate ad-hoc algorithms in
the reconciliation process.

Our approach is designed to involve several sources at a time during the linking process by
merging them in a single and reusable RDF graph. MERA describes a graph schema in which every
piece of information is qualified with its original source through reification techniques. This allows
the algorithm to distinguish which nodes of the graph are potential matches between a given pair of
sources and which ones are merely used to enrich the data and improve the matching process. This
also allows ignoring the content of certain sources in another use of the built graph.

In section 2, we make a revision of the state of the art of record linkage and we describe some
related works. In section 3, we provide a detailed overview of MERA. In section 4, we describe,
perform, and discuss several experiments using a prototype of MERA and we compare its effectiveness
with a baseline approach. Finally, in section 5, we enumerate the conclusions of our work as well as
future research lines. The source code is available at https://github.com/DaniFdezAlvarez/wMERA.

2. STATE OF THE ART

Record linkage, also referred as object identification (Tejada, Knoblock, & Minton, 2001, 2002),
datacleaning (Do & Rahm, 2002), approximate matching or approximate join (Gravano et al., 2001;
Guha, Koudas, Marathe, & Srivastava, 2004), fuzzy matching (Ananthakrishna, Chaudhuri, &
Ganti, 2002), entity resolution (Benjelloun et al., 2009), reference reconciliation (Dong, Halevy, &
Madhavan, 2005), or coreference resolution (Lee et al., 2013; Ng & Cardie, 2002), is a widely-studied
problem. Nevertheless, with the proliferation of huge databases in the Era of Big Data and the need
of developing effective and scalable reconciliation systems, the scientific community still put much
effort to solve the challenges of record linkage (Enríquez, Domínguez-Mayo, Escalona, Ross, &
Staples, 2017). The essence of the problem consists of identifying two or more elements that refer to
the same reality. Basic use cases are the detection of duplicate entries within a file or the detection
of equivalents across two databases.

Research work about entity resolution has been largely based on Fellegi & Sunter (1969), which
was inspired by the ideas introduced by Newcombe & Kennedy (1962). Record linkage is presented as
a classification problem, where a pair of entities can be classified as “matching” or “non-matching”.
Several scientific communities have adopted that scheme to formulate the problem in its own way,
producing many reusable techniques and technologies to solve it (P Christen, 2012; Winkler, 2014).
A systematic study of the type of techniques developed in the last seven years for reconciliation tasks
in Big Data environments is provided in (Enríquez et al., 2017).

Since record linkage becomes a problem due to the lack of unique reliable identifiers, traditional
approaches are highly based in string comparators. Being able to recognize different strings that
represent the same real-world object has been, and still is, a major research project (Hall & Dowling,

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

45

1980; Navarro, 2001; Yu, Li, Deng, & Feng, 2016). Despite there have been many works defining string
similarity measures (Chaudhuri, Ganjam, Ganti, & Motwani, 2003; Cohen, Ravikumar, & Fienberg,
2003; Monge, Elkan, & others, 1996; Navarro, 2001), it has been concluded that there is not such
an algorithm or combination that can outperform all the rest in terms of accuracy and efficiency in
every context (Cohen et al., 2003; Harron, Goldstein, & Dibben, 2015), not even if we try to compare
specific subsets of algorithms such as string-edit distance metrics(Peng, Li, & Kennedy, 2014).

Selecting the most accurate strategy to apply in order to get the best possible results is not a trivial
task. Some research lines have put efforts in the design of methods to automatically detect which
algorithm or combination of algorithms from a known set of possibilities works better for a particular
scenario (Bilenko & Mooney, 2003; Nguyen & Ichise, 2016; Sarawagi & Bhamidipaty, 2002). This
can be done through providing training data containing a set of pairs qualified as “matching” or
“non-matching” and applying automatic learning techniques.

The techniques used to determine the similarity between two records through applying string
distance metrics over their attributes are known as content-based or Feature-Based Similarities (FSB).
However, sometimes FBS is not enough to properly if two entities match the same real object, especially
when a disambiguation is needed (Kalashnikov & Mehrotra, 2006). In those scenarios, checking
relations between entities in addition to entities’ features may be a mechanism to improve matching.
Traditional FBS approaches match each individual independently. By contrast, approaches in which
relations between records are considered to produce a result are named context-based (Rahmani,
Ranjbar-Sahraei, Weiss, & Tuyls, 2016) or collective entity resolution systems (Bhattacharya &
Getoor, 2007). The representation of relations between entities fits well in graph structures, so these
kinds of approaches are usually graph-based (P Christen, 2012). Those graph-based approaches
combined with FBS can outperform the matching quality of FBS standalone on different scenarios
(Bhattacharya & Getoor, 2007; Frontini, Brando, & Ganascia, 2015; Song, Luo, & Heflin, 2017;
Zhu, Ghasemi-Gol, Szekely, Galstyan, & Knoblock, 2016). Collective approaches usually carry more
scalability challenges compared with FBS systems. However, it has been proved that those algorithms
could be adapted to be more scalable (Rastogi, Dalvi, & Garofalakis, 2011). In fact, a recent study has
pointed out that 26.23% of the publications of record linkage techniques in Big Data environments
over the past seven years rely on graph-based approaches or are thought to be applied to graphs of
Linked Data (Enríquez et al., 2017).

One of the main tools used to improve the scalability of systems are the blocking /clustering
techniques. When trying to find matches between entities of two databases A and B, assuming
that every ai in A is a possible match for every bj in B would lead to a quadratic complexity hardly
scalable. Many approaches were early suggested to reduce that complexity via filtering the number of
potential matches, such as sorting of records in order to keep similar contents together (Hernández &
Stolfo, 1995), clustering of candidates with computationally cheap functions before employing more
expensive methods to compare potential pairs(Chaudhuri et al., 2003) or q-gram indexing (Baxter,
Christen, & Churches, 2003). Current investigation lines are going deeper in the development of
blocking techniques for large, heterogeneous and possibly semi-structured data (Efthymiou, Papadakis,
Papastefanatos, Stefanidis, & Palpanas, 2017; Papadakis, Ioannou, Niederée, Palpanas, & Nejdl, 2012),
as well as graph-like environments (de Assis Costa & de Oliveira, 2016; Fisher, Christen, Wang, &
Rahm, 2015; Shin, Jung, Lee, & Kang, 2015).

Developing or designing a reconciliation system needs to include combinations of the algorithms
mentioned and several other features. A great example could be privacy preserving matching
(Vatsalan, Christen, & Verykios, 2013; Vatsalan, Sehili, Christen, & Rahm, 2017), handy when
several organizations take part in the matching process but the information to be linked is sensible
or should be encrypted. In addition, some extra challenges or decisions must be addressed, such as
accepted input/output formats, mechanisms to interact with the user (API, library, web application,
etc.), configuration options, the possibility of including extra algorithms/workflows.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

46

We have explored a commercial patented system specialized in recognition of music metadata
(Dunning, Kindig, Joshlin, & Archibald, 2011) and several well-known open-source approaches,
including Dude (Draisbach & Naumann, 2010), D-Dupe (Kang, Getoor, Shneiderman, Bilgic,
& Licamele, 2008), SILK (Volz, Bizer, Gaedke, & Kobilarov, 2009), BigMatch (Yancey, 2002),
FEBRL (Peter Christen, 2008), FRIL (Jurczyk, Lu, Xiong, Cragan, & Correa, 2008), Merge ToolBox
(Schnell, Bachteler, & Reiher, 2009), NADEEF/ER (Elmagarmid et al., 2014), and MusicBrainz
Piccard (Stutzbach, 2011). We have checked the features of those systems and we provide a qualitative
comparison of them with MERA architecture, which is shown in Table 1.

Despite the fact that all of them tackle the challenge of entity matching, they are really
heterogeneous. Table 1 also shows that MERA is the most flexible and configurable system among
the music-specialized ones. In addition, to the best of our knowledge, none of the existing systems
include the following MERA’s features:

•	 Integration of several sources to be used during the reconciliation process in a reusable graph, with
a scheme which maintains which pieces of information have been provided by which source(s);

•	 Identification of alternative textual forms of an entity during the matching process via configurable
complex paths in a graph.

Table 1. Comparison of record linkage systems

M
ER

A

Bi
gM

at
ch

FE
BR

L

SI
LK

D
U

D
E

D
-D

up
e

FR
IL

M
er

ge

To
ol

Bo
x

N
A

D
EE

F/
ER C

D

Pa
te

nt

M
B

Pi
cc

ar
d

Main
Linkage ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓

Deduplication - ✓ ✓ - ✓ ✓ - ✓ ✓ - -

Comparison
algorithms

Include ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Let choose ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ - -

Let combine ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓

Let implement ✓ - ✓ - ✓ ✓ - - ✓ - -

Blocking
techniques

Include ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Let choose ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - -

Let combine ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ -

Let implement ✓ ✓ ✓ - ✓ ✓ - - - -

Training data

Include - - ✓ - - - ✓ - - - -

Let choose - - ✓ - - - ✓ - - - -

Let combine - - ✓ - - - - - - - -

Let implement - - ✓ - - - - - - - -

Collective Matching ✓ - - - - ✓ - - - - ✓

Privacy preserving - - - - - - - ✓ - - -

GUI - - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓

Multi-source ✓ - - - - - - - - ✓ -

Alternative entity forms ✓ - - - - - - - - - ✓

Music specialized ✓ - - - - - - - - ✓ ✓

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

47

3. SYSTEM ARCHITECTURE

MERA defines a strategy to combine several categories of algorithms or heuristics to conciliate two sets
of entities A = {a0, a1 ... an} and B = {b0, b1 … bm}, where the entities of B are stored in an RDF graph
G. Each record ai is processed independently to find its most similar records in B. The user of MERA
should be allowed to define a set of conditions that an entity bj must fulfill to be considered as a possible
match. Consequently, every entity ai could be associated with none, one or several results, depending
on the number of entities bj ∊ B that fit in the conditions. In case of having more than one result for the
same entity ai, those will be ranked regarding its degree of similarity with the target element.

If we think of MERA as a black box, the expected inputs and the received outputs are the following:

•	 Input1: Set of entities A = {a0, a1 … an}, for which every ai will be processed independently;
•	 Input2: RDF graph containing the set of entities B = {b0, b1 … bm};
•	 Input3: Configuration data, in which MERA’s options are specified;
•	 Output: Association of each element ai with the elements in B that fit in the matching conditions.

In case of having several results for an entity ai, they will be presented sorted in decreasing order
by degree of similarity with ai.

MERA has been designed to achieve better results with more prior knowledge of the nature of
the sources to conciliate, so the user can configure several parameters of the matching process like:

•	 List of normalization algorithms;
•	 List of comparison algorithms;
•	 List of blocking functions;
•	 Relevance of related contents/entities when applying disambiguation;
•	 Thresholds of similarity that two entities should reach to be considered matches;
•	 List of sources (white/black lists) to use during the matching process;
•	 Maximum number of candidate results per query;
•	 Maximum number of candidates at the end of blocking stages;
•	 Relations between entities that should be considered;
•	 Alternative forms of entities that should be considered.

Configuration related to algorithms or acceptance values can be applied at different hierarchical
levels, i.e., the user could indicate, for example, that Levenshtein distance should be applied in every
case with the exception of canonical names, which will be compared using exact match. The user can
also specify that the canonical name of albums will be compared with an exact match, but the canonical
name of a group will use Jaccard similarity. In addition, MERA is designed to let a user implement
new functions (normalization, comparison, blocking) that can be integrated into the base workflow.

The graph schema of MERA has been designed to let the user combine the knowledge of several
sources during the matching process. Suppose a scenario in which we want to conciliate two sources
A and B, where A contains civil names of artists and B contains artistic names. Also, we have access
to a third source C which includes both civil and artistic names. In order to produce matches between
A and B, we propose to turn B records in a graph G and link records of C with nodes of G. The
obtained results allow us to build an enriched graph G’ containing all B records in nodes decorated
with information of C. By this, making queries with entities of A against G’ will potentially improve
the result of making queries directly against G. G’ may be reusable for different purposes, even to use
separately the information of B and C. Each piece of information is associated with its original source,
and MERA purpose a way of just using the data from certain sources during the matching process.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

48

3.1. Query Structure
Records in A are turned into queries that may involve one or more entities at a time. A query in MERA
must specify a main type or main order o, a main content m, and a set R of typed refinements r, represented
as pairs ri = (ti, si). Let’s consider a scenario in which we have a set A containing artists possibly associated
to song titles. One of the artists of A is aα = “Mike Chang”, with no associated songs. Another artist
is aβ = “Kurt Hummel”, and he has associated the song sβ = “For Good”. Now, let’s consider that we
want to conciliate the artists of A with a graph G. For that, we must turn entities in A into queries. The
resulting query qα = (oα,mα,Rα = {rα*}) for aα would be (“artist”, “Mike Chang”, { λ }). The resulting
query qβ = (oβ,mβ,Rβ = {rβ*}) for aβ would be (“artist”, “Kurt Hummel”, {(“song”, “For Good”)}).

As it can be seen, a MERA query qi searches for a main raw string mi associated to certain
type oi. Also, all the refinements or extra data provided for disambiguation purposes should also be
labeled with a type.

3.2. MERA’s Adaptable Algorithm
Algorithm 1 describes the MERA algorithm from the moment in which a Query q is received to the
moment in which MERA returns its associated entities in Graph G. Table 2 contains the meaning of
every macro used in Algorithm 1.

Algorithm 1. MERA query

01: Input: Graph G
02: Input: Query Q
03: Input: Config C
 %% Blocking stage
04: candidateNodes ← G.nodes
05: for all fBLK ∊ C.blockingFunctions do
06: candidateNodes ← fBLK

(q, candidateNodes)
 %% Main Comparison
07: tmpResults ← [λ]
08: for all aNode ∊ candidateNodes do
09: formScores ← {λ}
10: for all aForm ∊ aNode.alternativeForms do
11: formScores += fCMP (q.mainContent, aForm , q.type)
12: if max(formScores) ≥ C.minMainScore(q.order) then
13: tmpResults[aNode] = max(formScores)
 %% Refinements
14: for all aRefType ∊ q.refinementTypes do
15: for all aCandidateRes ∊ tmpResults do
16: candidateRefs ← G.getRelated(aCandidateRes.node, aRefType)
17: for all aRefinement ∊ q.refinementsOfType(aRefType) do
18: formScores ← { λ }
19: for all aForm ∊ candidateRefs.alternativeForms do
20: formScores += f

CMP
 (aRef, aForm, aRefType)

21: if max(formScores) ≥ C.minRefScore(q.order, aRefType) then
22: refScore ←max(formScores)·C.relevance(q.order, aRefType)
23: tmpResults[aNode] += refScore
 %% Filtering and sorting results
24: results ← [λ]
25: k ← C.maxResults(q.order)

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

49

26: for all candidate ∊ tmpResults do
27: if candidate.score < C. minScore(q.order) then
28: results += candidate
29: sort(results)
30: if |results| ≤ k then
31: return results
32: else
33: return results[0:k]

We have distinguished four parts in Algorithm 1:

•	 Blocking Stage: C stores a set of blocking functions to filter candidates of G. All those functions
are applied over G nodes to obtain a subset of nodes which will be compared with q;

•	 Main Comparison: Query q has a main type o and a main string content m. m is compared with
all the alternative forms of the candidates obtained in step 1;

Table 2. MERA query

Structures

Model Meaning

{λ} Empty set

[λ] Empty dictionary of pairs (key → value)

Functions

Name Parameters Return

fBLK Query q, set of nodes S Subset S’ of S with the best matching candidates for q in S

fCMP String s1, string s2, type t Similarity score between s1 and s2, applying algorithms associated to type t

sort Set or dictionary S Sort S in descending order

Methods

Name Parameters Invoked over Return

minMainScore Type of order o Config C Minimum score associated to o in C

getRelated Node n, type t Graph G Nodes in G related with n with an edge of type t

refinementsOfType Type t Query q Set of all the refinements in q of type t

minRefScore Type of order o, type of entity t Config C
Minimum score that an entity of type t should
reach to be accepted when executing an order
of type o.

relevance Type of order o, type of entity t Config C Relevance factor of a refinement of type t when
executing an order of type o.

Properties

Name Invoked over Return

nodes Graph G All nodes in G

blockingFunctions Config C Set of blocking functions

alternativeForms Node n Alternative forms of n

mainContent Query q Main string in q

type Query q Type of the main content in q

order Query q Type of order in q

refinementTypes Query q Set of types of refinements in q

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

50

•	 Refinements: Query q may have a set of extra data or refinements. For each refinement r, G
is navigated starting from the candidate nodes of step 1. If some coincidences good enough
according to C are found, the obtained score is added weighted according to parameters in C to
the respective candidate node score;

•	 Filtering and Sorting Results: The results associated with a query q are sorted in decreasing
order. The user can define a maximum quantity k of results to be associated to a query q. If more
results than k were found, only the k better are returned. Otherwise, all the results are returned.

3.3. String Comparison
In lines 11 and 20 of Algorithm 1, we use a macro fCMP to represent the process in which the similarity
between two strings s and t is obtained by using several comparison algorithms. fCMP also receives a
type o, expected to be the type of the entities that s and t represent. o must be specified for a potential
accuracy profit, since different algorithms may be applied to conciliate s and t regarding their type o.

When mapping s and t to their degree of similarity r, once the set P = {P0, P1 … Pk} of
preprocessing techniques and the set C = {C0, C1 ... Cl} of comparison techniques has been selected
based on the type o, the same workflow is followed in all cases, graphically described in Figure 1. s
is turned into s0 and t into t0 pipping all algorithms Pi in P. That is, the input of P0 is s and, in general
terms, the input of Pi is the output of Pi−1. The final output s0 is the output of Pk. Then, for each Ci ∊
C, we obtain every Ri = Ci(s0, t0). The greater value of {R0, R1 … Ri} is taken as the result r, having
fCMP(s, t, o) = r.

3.4. Blocking function
MERA may employ several blocking functions at a time. However, we also include a blocking
function that manages the concept of alternative form of an entity, which consists of an adaptation
of q-gram indexing and TF-IDF. The pseudo-code is included in Algorithm 2, and the macros are
explained in Table 3.

Algorithm 2. MERA blocking

01: Input: Query Q
02: Input: Index I
03: N ← extractUniqueQrams(q.mainContent)
04: Eidf

 = [λ]
05: E

ngr
 = [λ]

Figure 1. Mapping two strings s and t into a real number r

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

51

06: for all n
i
 ∊ N do

07: idf
ni
 ← I.idf(n

i
)

08: for all e
i
 ∊ I.entitiesWithQgram(n

i
) do

09: E
idf
 [e

i
] ← E

idf
 [e

i
]+meraTfIdf(e

i
, n

i
, idf

ni
 , I)

10: E
ngr
[e

i
] ← E

ngr
[e

i
] + 1

11: result ← {λ}
12: for all e

i
 ∊ E

ngr
 do

13: if E
ngr
[e

i
] = |N| then

14: result ← result + e
i

15: return result ⋃ bestK(E
idf
)

The differences between the Algorithm 2 and classical TF-IDF approaches based in q-grams are:

•	 We introduce the concept of alternative form of an entity. An entity may be considered as a set
of forms, and the algorithm takes care about how many forms contain a q-gram, instead of how
many total times a q-gram is contained in all the entity forms;

•	 We manage the relevance of the q-grams in an entity with an accumulated TF-IDF score but also
the number of q-grams contained in an entity e. If a certain entity contains all the q-grams of
q.mainContent, then that entity is automatically included in the result set of candidates.

Table 3. MERA blocking

Structures

Model Meaning

{λ} Empty set

[λ] Empty dictionary of pairs (key → value)

Functions

Name Parameters Return

extractUniqueQgrams String s Set containing all the q-grams in s

meraTfIdf entity ID ei,, q-gram ni, IDF score
idfni, Index I.

r = tf · idfni, where tf is the amount
of forms of ei in which the q-gram ni appears

bestK Dictionary D Set containing k keys of pairs in D that are pointing to greater values.
The parameter k is specified through configuration.

Methods

Name Parameters Invoked over Return

idf q-gram ni Index I Idf score of ni in I

entitiesWithNgram: q-gram ni Index I Id of the entities in I that contain ni

Properties

Name Invoked over Return

nodes Graph G All nodes in G

blockingFunctions Config C Set of blocking functions

alternativeForms Node n Alternative forms of n

mainContent Query q Main string in q

type Query q Type of the main content in q

order Query q Type of order in q

refinementTypes Query q Set of types of refinements in q

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

52

3.5. Graph navigation
MERA is designed to match queries with graph nodes that represent entities. Finding a result requires
the use of string similarity measures and graph navigation through the nodes’ neighborhood. MERA
uses two types of graph navigation when resolving a query: looking for alternative forms and looking
for related entities:

•	 Looking for alternative forms: An entity (node) e may be associated with several identifying
or pseudo-identifying forms in a graph, reachable from e through different properties or
complex paths. E.g., a node that represents an artist may be identified with properties such as
canonical name, civil name, alias, or complex paths as all the identifying forms of the groups
in which he participates;

•	 Looking for related entities: If the received queries include some refinement regarding other
entities (CD of a track, writer of a song, partner of an artist, etc.) the graph will be explored
looking for coincidences in that kind of relations.

3.6. Graph Schema
MERA is designed to be able to manage different sources, storing the origin of each piece of
information in a single Graph G. The strategy employed is reification, where the nodes are not directly
linked with their related contents (other entities of string properties), but auxiliary nodes are used
as intermediaries. Those auxiliary nodes relate the subject and the object while they point to a third
node that represents the origin of the information.

For example, if we have a song s performed by an artist a. A natural way of representing this with
an RDF graph is the triple t = (s, “performer”, a). However, we also want to keep the information
of according to who s is performed by a. Suppose that this information has been obtained from a
dataset d. In general terms, a triple t = (s, p, o) that has been obtained from a dataset d is transformed
in three triples (s, p, naux), (naux, target, o) and (naux, dataset, d).

Let’s say that we want to add the info of a new dataset denoted as e to graph G and, according
to e, song s also has a as a performer. The resulting MERA graph is the one shown in Figure 2. The
relation we want to represent is the same as in the previous case, i.e., the triple (s, “performer”, a), but
there is an already existing auxiliary node aux representing that link. Then, the triple (aux, “dataset”,
e) in G to indicate that dataset e also agrees about that link between s and a.

Figure 2. Auxiliary node with several datasets

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

53

4. EVALUATION

We have implemented a prototype of MERA which includes the following characteristics:

•	 Graph navigation exploring alternative forms for each entity;
•	 Graph navigation exploring related entities;
•	 Configuration of relevancies when applying refinements to a query;
•	 Configuration of minimum acceptable values for each type when scoring a result;
•	 Blocking function adapted to alternative entity forms as described in section 3.4;
•	 Usage of MERA RDF graph schema;
•	 Set of comparison algorithms of general-purpose;
•	 Set of text standardization functions.

The prototype has been used to conduct two kinds of experiments: On the one hand, intra-
comparisons tests to evaluate which is the influence of the different features of MERA over the
matching results. On the other hand, comparison of the results obtained by our prototype with the
results of a baseline system matching the same sources.

Our experiments are all based on the reconciliation of a random slice of two different musical
sources A and B against a third source C. The information of C has been introduced in a graph G and
the entries of A and B have been used to build queries. The expected result for each query has been
manually determined and annotated, which has allowed us to measure the correctness of the results
automatically obtained by MERA and the alternative approach. Source A is supposed to contain data
of high quality (complete and with none or few misspellings) while source B is supposed to contain
noisy data (user-entered and incomplete). However, every query thrown against G is formed by a
song name and one or more names of associated artists/writers. The selected sources are:

•	 Source A of high quality: MusicBrainz (Swartz, 2002);
•	 Source B of noisy data: Queries extracted from AOL dump (Arrington, 2006);
•	 Target source C: Discogs (Hartnett, 2015).

Some entries were randomly selected from the material of MusicBrainz and AOL to build queries.
The same queries were used during all the experiments. Since the targeted source is the content of
Discogs, the advanced search engine of Discogs itself has been used to compare with MERA. As well
as our proposal, Discogs advanced search engine allows the user to perform rich queries in which every
piece of information is labeled with a type of the musical domain (release, artist, writer, genre…).

4.1. Description of Experiments
The experiments were executed under the following software/hardware conditions: Virtual Machine
using Windows Azure cloud computing services, 64-bit Operating System: Windows Server 2012
R2, AMD Opteron (tm) Processor 4171 HE 2.10 GHz, 14 GB RAM and Python 2.7.3 64-bit.

4.1.1. Target Source: Discogs
We have used Discogs (Hartnett, 2015) to create a graph G containing a total of 500000 songs, as well
as their associated artists and writers. The information has been extracted from a dump of Discogs
releases published in 2015-01-01. That dump includes a set of musical releases containing one or
more tracks and associated artist, with a total of 45458287 detected tracks among all the releases.

The scalability of our prototype is not enough to manage a graph with the data of the entire
dump, since it completely works in main memory, so we have reduced that quantity to 500000, a
number that we can handle but that is still a representative and a high enough slice. Those 500000

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

54

songs include 205 that has been manually detected to be the adequate answer to the queries used in
the experiments. The rest of songs has been randomly selected from the dump file.

We also included in the graph all the artists and writers linked to each song. Discogs associates
people to tracks/releases using different roles. We have mapped some of the original Discogs roles
to our own roles to include these associated people in our graph. Discogs roles “Artist”, “Featuring”,
and “Vocals” have been mapped to “artist”, and “Written-By” has been mapped to “writer”. The rest
of Discogs roles have been ignored.

The final graph used in the experiments contains a total of 500000 songs and 624441 people.

4.1.2. Source of High Quality: MusicBrainz
The open music encyclopedia MusicBrainz (Hemerly, 2011) fits in our requirements of offering a
great amount of data of high quality. We have randomly selected a set of works from this source and
we have manually checked that they point to a work that also exists in Discogs data dump. In order
to generate a sample of MusicBrainz, the entire database was downloaded and 300 recordings were
randomly picked. Later, we manually looked for coincidences between these elements and song nodes
in the graph formed by the partial content of Discogs. The first 100 coincidences were selected and
used to build queries using the song title and the artists/writers associated to them in MusicBrainz.
The average of associated artist/writers per song is 2.62.

4.1.3. Noisy Source: AOL Dump
In 2006, AOL Inc. released a file containing twenty million search keywords for over 650.000 users
over a three-month period (Arrington, 2006). We have considered that musical-related searches found
among this material could be a representative example of a noisy source, since all the inaccuracies
have been introduced by random real users when doing real searches. The strategy to find musical
content among the rest of searches has followed the next steps:

•	 We explored all the items selecting those that contained the tokens “feat” and “featuring”. We
divided those items into two parts using the word “feat” as separator, and we added each one to
a set of noisy candidate keys N;

•	 We removed from N those words or sequences that are meaningless for our purposes, such as
“to download”, “ringtone”, “free music”, “song of”, “video”, etc. In case of finding “-” in a key,
we divided the key into two pieces and we repeated the cleaning process with each part. All the
results were added to a set of clean candidate keys C with 1203 elements;

•	 We revised manually each key in C in the context of its apparition in the log of AOL to check if
they really were artists/songs or not. In addition, if we detected that some of the keys contained
more than one artist/song at a time, we divided it in parts and considered it separately. At the
end of this process 922 sequences (not unique) representing songs or artists were detected. We
stored them in a set of found keys F;

•	 We put all the elements of F in a set of definitive keys D. Then, for every key ki in F with a length
greater than 3, we generated all the possible strings Si = {s0, s1 … sk} in a Levenshtein distance
of one with ki. For each sj ∈ Si, if sj was found more than 5 times in the log of AOL, it was added
to D. With this, we collected a group of detected musical entities that were queried by users as
well as character variations of all of them that had a certain presence in the log of AOL. We
removed from D meaningless sequences as the ones used in previous steps;

•	 We processed again the entire log looking for searches containing at least a key of D. We elaborated
three different lists with the found searches, regarding if they contained a single key, between
two and three or more than three. 327,904 searches were detected;

•	 We messed those lists randomly. Then, we revised manually the lists to extract the first 35 results
of each one that we could identify as searches for songs that included, at least, one artist name.
We erased all the meaningless words or sequences of previous steps from the results.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

55

In every case, we respected the original appearance of each entity in the log of AOL. That is, we
identified different parts in each element and we removed meaningless words, but no other changes
were applied to the original content.

With this, we obtained a list of 105 items with material to build queries with noise introduced
by real users. The average of associated artists per song is 1.44.

4.1.4. Measuring the Effect of MERA Features
Some experiments designed to check the impact of MERA’s proposals over scenarios with different
level of data quality were executed. The tests evaluate the correctness of the results returned by
our prototype with different configurations when executing a consistent set of queries against
the very same source. In all cases, the entities to recognize were songs, and the information used
was its title and associated artists. The sets of chosen features across the different experiments
are shown in Table 4.

There are some other configuration parameters whose values have been fixed for all the
experiments, including:

•	 Top results per query: 15
•	 Minimum score for a song to be accepted: 0.50
•	 Minimum score for an artist to be accepted: 0.65
•	 Artist relevance when refining the result of a song: 0.80
•	 Reconciliation string algorithms used in all cases: Levenshtein similarity
•	 Pre-processing functions included: replacement of all non-ASCII characters by ASCII equivalents

with Unicode normalization, lower-casing, deletion of punctuation marks, and deletion of
redundant white spaces.

In absence of the MERA blocking function described in the Algorithm 2, the blocking strategy
consisted on selecting the best 60 candidates based on accumulated TF-IDF score of q-grams. In
case of being active MERA blocking, the candidates may exceed that number if there are enough
individuals containing all the q-grams of the song provided in the query. The length of the q-grams
was, in all cases, 3 characters.

This configuration allows relatively bad results to be ranked (at a low position) as possible
matches, mainly because of the low threshold of acceptance for songs. An execution of MERA
looking for just safe matches should probably define higher values of acceptance. However, since we
are purely evaluating the correctness of the results, in this case we prefer to prioritize exhaustiveness
by sacrificing performance (the more accepted songs, the more comparisons will be performed).
Needless to say, the usage of Levenshtein distance as the unique string similarity may cause false
negatives when trying to match entities which are named using disordered tokens or abbreviations
not recognized as alternative forms.

Table 4. Features used in experiments

Feature
Experiment ID

A B C D E

Considering alternative forms of entities - ✓ - ✓ ✓

Using information of related entities - - ✓ ✓ ✓

Using MERA blocking function - - - - ✓

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

56

The alternative forms considered for each entity when building the graph G were the following:

•	 Artists: Canonical name, civil name, alias and usual name variations such as abbreviations. All
this information is provided by Discogs. When dealing with a group, also the canonical name of its
integrating artists. When dealing with a person, the canonical name of the groups she belongs to;

•	 Songs: Canonical name. When this name has text between brackets (e.g., “Summer love (radio
remix)”), also the same name without the information in brackets was considered as an alternative form.

4.1.5. Comparing MERA with Discogs Advanced Search
Among the available alternative matching systems mentioned in section 2, Discogs advanced search
system1 was selected as baseline mainly because of two reasons. On the one hand, in our experiments
we aim to match entities of different sources with the content of Discogs. Then, it seems like the
search engine of Discogs itself may be an appropriate tool to consider for such a goal. On the other
hand, the input information expected by the advanced search system of Discogs is pretty similar to
the conceptual information expected by MERA. Most of the alternatives mentioned in section 2 are
general-purpose and do not accept a labeled input such as MERA expects. Despite it may be possible
to adapt some of those systems to build conditions similar to our experiments in terms of targeted
sources and type of queries, probably the closest systems to our design are the music specialized
ones, such as Discogs search engine or MusicBrainz Piccard. Nevertheless, the former is designed
to match entries with MusicBrainz database.

Discogs portal also offers a type of unlabeled search as a regular general-purpose search engine.
However, this type of search is hardly comparable to MERA, especially when dealing with queries
which have extra associated information further than the name of the core element to match. Because
of this, only the advanced search system has been compared with our prototype.

As far as we know, Discogs has not released software separate from its web application to perform
queries against its library. Due to that, our evaluation has consisted in introducing manually the contents
of each query in the web form of advanced search and annotating the obtained results. Each query
has been thrown using different slices of the whole information to check how the presence/absence of
data affects the results. For instance, given a query to match a song called “Heart-Shaped Box”, with
“Nirvana” as artist and “Kurt Cobain” as writer, the results of using just the of the name of the song
in the form, song plus artists, song plus writer, and all the information at a time have been annotated.

All the queries from both target sources were introduced in the Discogs system. In the case of
AOL, which contains information already typed, artists were specified in the field with the label
“By Artist”. The information related to writers have been put into the field “Credit”, which points
to every other role different to “artist”. However, in the case of AOL source, the content was typed
a posteriori, then it is not clear if the user who originally wrote the query was referring to an artist,
a writer or to any other role. Due to that reason, the information of people was introduced in both
fields of the form, and just the best-obtained result was annotated.

As we previously stated, the current version of our prototype operates just in main memory and
cannot handle a graph containing the entire dump of Discogs. Nevertheless, the Discogs web search
system always uses the entire information of the source. In order to produce comparable results,
when we threw a query and the desired entry did not appear in the first position of the results, we
checked each element which ranked better to determine if it were also included in our random slice
of Discogs. All those entities that were not in our slice were excluded from the obtained list, and the
expected entry was promoted to its corresponding rank without these elements. This decision could
have affected the quality of the experiments if Discogs applied a blocking function with a maximum
number of candidates, such as MERA does. However, it does not seem that there is a maximum
number of results when using the web search.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

57

4.2. Results and Discussion
4.2.1. Inclusion of MERA Features
Experiment A consisted of applying Levenshtein distance to conciliate sources without using any
kind of graph navigation, i.e., just by comparing canonical titles of songs. The obtained results can be
queried in Figure 3. In the chart, we have grouped the results of the queries in four different categories:

•	 Queries in which the correct entry appeared in first place;
•	 Queries in which the correct entry appeared in second or third place;
•	 Queries in which the correct entry appeared in fourth or worse place;
•	 Queries in which the correct entry did not even appear.

Under these conditions, 52% of MB’s target results are ranked first. In AOL case, just 43.81%.
The reasons we have found for these low rates of correct are mainly the same for both sources:

•	 The blocking function did not detect as candidate the target entry: This happens mostly
when dealing with songs with a short name, with common words in G, or a combination of
these two factors;

•	 Lack of alternative forms of song: The titles of AOL and MB may present a great difference with
their corresponding title in Discogs according to Levenshtein distance, despite they point to the
same reality. This is mainly because Discogs’ content usually contains song titles with information
between brackets, such as “Summer love (radio edition)” or “Summer love (remix DJ)”;

•	 Ambiguity: Song names are not unique in some cases. If we do not explore related artist in order
to decide the best result, there is not a reliable criterion to decide which entry should appear in
first place.

The conditions of experiments B and C allow us to solve issues derived from lack of alternative
forms of songs and ambiguity respectively. These results are respectively shown in Figure 4 and
Figure 5. Note that the inclusion of MERA’s graph navigation strategies improve the results for both
sources, increasing the rate of target entities ranked first and decreasing the rate of intermediate/
missed entries. The inclusion of related entities in Experiment C produces a greater positive impact
on the results, improving the rate of first-ranked entities. Nevertheless, it has poor or even none
impact in the rate of missed entries. This happens because most of the missed results are not accepted
in the blocking stage. MERA explores relations between entities that have passed the blocking cut,
so intermediate results can improve their rank, but this does not affect at all to those that have not

Figure 3. Experiment A: No graph navigation

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

58

reached the comparison stage. On the other hand, in Experiment B we have added alternative forms
that affect the TF-IDF of some target entities, which allow some missed results to pass the threshold
during the blocking stage and let them be evaluated by the comparison algorithms.

In Experiment D, we have applied both graph navigations at a time, i.e., we consider alternative
forms and related entities during the matching process. This has a positive effect on the success rates
for both sources. The results can be checked in Figure 6. In this case, the reasons to find a target entry
missed or low-ranked are not the same for both sources:

•	 MusicBrainz: There are 6 target entries not ranked first. One of them did not pass the blocking
function threshold because the song has a short name formed by common q-grams in Spanish:
“El amor”. The other five are all pieces of classical music in which it looks like Levenshtein
distance cannot detect matches. An illustrative example of this is the query “Sonata for Piano no.
7 in C major, K. 284b/309: III. Rondeau. Allegretto grazioso”. Its equivalent in Discogs express
the same reality but with different naming conventions. Artist information has not been helpful
in these cases since the classical composers provided by MusicBrainz for those pieces (Mozart,
Beethoven...) are widely repeated across other tracks with similar names. Algorithms different
to Levenshtein should be applied to match this kind of works;

•	 AOL: The under-ranked entries happen mainly because of the detection of versions of songs
before the one we are looking for. The reason for the missed ones is, in most of the cases, that the
target entry did not pass the blocking function threshold. Some results are still missed because

Figure 4. Experiment B: Alternative forms

Figure 5. Experiment C: Related entities

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

59

the song name contained hard misspellings. An illustrative example is the string “ghostrider”
trying to express the song “Ghost Writer”.

When we include MERA blocking function in Experiment E, all the target results pass the blocking
cut and the rate of first-ranked entries grows to 95% for MB and 94.29% for AOL. The under-ranked
results are the same of Experiment E, since we have not change comparison techniques nor we used
extra data. The obtained results are shown in Figure 7.

Nevertheless, this blocking function has a performance cost. We repeated 50 times the
experiments E and D and our measurements indicate that the performance is 14.76% worse in
experiment E compared with experiment D. This cost is not just because of the calculations needed
to select the candidates in blocking stage, but because that approach may generate more candidates
than the pre-configured top number. This leads to more operations during the comparison stage.
We have measured how MERA blocking function exceeds the preconfigured number of candidates
to be accepted in blocking stage in experiment E. That number had been set to 60, and we checked
that the average number of candidates returned per entity has been 68.12. Also, 94.62% of the
queries had exactly 60 results. However, we have detected that in some cases the function had
returned an amount of candidates that exceed by large 60. This had happened with queries formed
by short names with common q-grams in G. While executing E, the query that produced a higher
number of valid candidates in blocking stage has been “So what” of the artist “Ciara”, with a total
of 326 detected candidates.

Figure 6. Experiment D: Complete graph navigation

Figure 7. Experiment E: Using MERA blocking function

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

60

4.2.2. Data Quality Effect with MERA
As shown in Figure 3, Figure 4, Figure 5, and Figure 6, if we do not use all the MERA features
implemented in our prototype, the results of the clean source (MB) improve the results of the noisy
source (AOL). However, when using all them at a time, as it is shown in Figure 7, both sources present
very similar results. Actually, AOL obtained a lower rate of missed songs (2.86% vs 5% of MB).
Nevertheless, these measurements may be conditioned by the size and nature of the samples. More
tests are needed to measure how data quality impacts over results when using MERA.

4.2.3. MERA vs Discogs System
During the evaluation of MERA features in the previous experiments, we could check that the
inclusion of an extra feature has a positive effect on the obtained results. This means that, in general
terms, the more information is associated with a query, the more accurate are the results brought by
MERA. However, Discogs search engine does not behave equally. The algorithms used by Discogs
look for entries in which all the information introduced is included somehow. This may cause false
negatives under the following conditions:

•	 When the information of the query exceeds the information of the target entity;
•	 When some of the elements of the query do not produce a match with some of the elements of

the target entity due to misspellings or alternative names.

Due to that reason, using all the available information is not always the best approach to find the
correct result with Discogs search engine. We have detected that 46.81% of the target entries using
AOL material ranked worse with the inclusion in the query of some extra piece of information. In
the case of MusicBrainz, this rate grows up to 64%.

Bearing that in mind, we present the results of our experiments using Discogs search engine
segregated by the number and nature of the pieces of information used in each attempt to match an
element of AOL/MusicBrainz with an entry in Discogs. We analyze separately the material of AOL
and MusicBrainz.
4.2.3.1. AOL Against Discogs and MERA
In Figure 8 the results of using different strategies to match the very same element of the AOL
material with its corresponding entry in Discogs are offered. Those strategies are identified with a

Figure 8. AOL against Discogs and MERA

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

61

label in the Y axis of the chart. Each label has the following meaning (in every case at least the song
name was included in the query):

•	 MERA: MERA results using its complete set of features. These statistics are the ones obtained
in Experiment E;

•	 Best Result: Best obtained result using any of the previous strategies for each entry;
•	 All Artist: All the available artist, in case there are two or more;
•	 Just an Artist: The associated artist who produced better results;
•	 No Artist: Just a song name.

Not all the queries fit in all the strategies. In the “All artists” section, just those entries with two
or more associated people are considered. In every case, the results are relative to the number of
cases which fit in the strategy.

Several conclusions can be extracted from the obtained data. Firstly, it seems like the best strategy
to find the target entity for each query is using a single artist as extra information. The rate of queries
which are resolved with the desired entry in the first position is 63.81% with just an artist, compared
with the 55.17% obtained for all artists and the 24.76% with no extra information rather than song
name. The reason behind this is the general strategy followed by Discogs search engine, in which all
the information introduced in the search form must be part of an entry to be included in the results.
Then, using an artist in the query usually works as a useful tool to decide the best entry among several
songs with the same or similar name. However, including a piece of information which is not stored
in Discogs cause a false negative.

As well as MERA, Discogs produced poor results of desired entities ranked in the first
place when using just song names. Just 24.76% of the entities are successfully matched without
providing artists. With MERA this number grows up to 43.81% without using alternative
forms, as it is shown in Figure 3 (Experiment A). Despite MERA’s rate is sensibly higher,
none of the systems are accurate enough to consider that they produce good enough matches
at the first attempt. Nevertheless, Discogs outperforms MERA in the rate of missed results
using just a song name. 32.38% are missed with MERA, by 18.10% that are missed with
Discogs. This difference is mainly caused because of the effects of the configured blocking
function in Experiment A. The desired results missed MERA’s cut, while they are simply
low-ranked using Discogs.

Independently of the information combination employed, MERA outperforms Discogs
effectiveness. As it is shown in Figure 7 (Experiment E), where all the features of our
prototype were active, MERA finds the desired result in 94.29% of the cases, compared with
the 68.57% achieved by Discogs. The reason behind this is the different text reconciliation
algorithms used. Discogs search engine, which is based on ElasticSearch (Hartnett, 2015), do
not follow a strategy of exact match, since it is capable of producing matches between titles
with some missed or disordered tokens. However, it is heavily affected by misspellings or
any other internal change in a token. An example of this is the query whose expected match
is the song Fine Young, of Cannibals. The input found in the dump of AOL for this recording
was “fine young”, of “canibals”. A query which uses just the song name is resolved with the
desired entry ranking first. However, when introducing “canibals” in the field of artist, no
results are offered by the search engine because of a missing “n” in the group name. Another
significant example is the query “‘touch it’ remix”, with single quotes surrounding “touch
it” and no blank between the final quote and “remix”. The absence of a blank after the quote
cause that no result is shown. Just by adding that white space to the original query, the first
result obtained is the target one.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

62

4.2.3.2. MusicBrainz Against Discogs and MERA
The results of using different sets of information of an entry of MusicBrainz to match it with its
equivalent in Discogs using the web search engine are shown in Figure 9. Due to the nature of
MusicBrainz information, it has been possible to test more combinations than in the case of AOL.
All the people related to a song in MusicBrainz has an explicit role (main artist, writer, featurer,
etc.). In this case, it is clear where each piece of information should be placed in the search form, in
opposition to the case of AOL were the roles of related people were a priori unknown. This lets us
analyze in a separate way the effect of including pieces of information of different types in the form.

The different strategies are identified with a label in the Y axes. The labels have the following
meaning (in every case at least the song name was included in the query):

•	 MERA: MERA results using its complete set of features. These statistics are the ones obtained
in Experiment E;

•	 Best Result: For each entry in MusicBrainz, best result achieved by using any of the
previous strategies;

•	 An Artist or a Writer: The name of the artist or the writer who, by just himself, produced the
best result;

•	 All the Information: The name of every artist and every writer, just in case this number of
related entities is greater or equal to three;

•	 An Artist and a Writer: The name of the artist and the writer which produce a better result,
just in case there are at least an artist and a writer;

•	 All Writers: The name of all the writers at a time;
•	 Just a Writer: Just the name of the writer who produced the best result;
•	 All Artists: All the names of all the artists at a time;
•	 Just an Artist: Just the name of the artist who produced the best result;
•	 No Artists: Just a song name.

As in the case of AOL, not all the MusicBrainz entries fit in all the strategies. In every case, the
offered results are relative to the number of cases which fits in the strategy.

Figure 9. MusicBrainz against Discogs and MERA

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

63

One of the most relevant facts that can be extracted from our results is that, with a clean source
and an adequate combination of artists and writers, the effectiveness of MERA and Discogs are quite
similar. With all its features activated, our prototype was able to rank first the adequate entity 95%
of the times, compared with the 93% scored by Discogs. Nevertheless, it is noticeable that the score
of Discogs is obtained through considering the best attempt for each entry of MusicBrainz, instead
of using a consistent strategy. Using a consistent strategy, the inclusion of a single artist in the query
is the best approach to produce perfect matchings, with a success rate of 88.41%.

The results of using all the available information in a query may look shocking a priori: just 32.43%
of the entries with several artists and writers associated produced a match, while 67.57% of the attempts
did not return the target entity among the results (actually, all the results consisted of an empty list in
those cases). This occurs because of using too much information. As we have already mentioned, a
query with data more complete than the corresponding entry in Discogs cause a false negative.

Note that the inclusion of an artist, with a success rate of 88.41%, has a more positive effect on
the results than the inclusion of a writer, with a success rate of 77.78%. The reason for this result
is that it is common to have songs versioned by different artists. In a well-documented source,
such as Discogs, all these versions are connected to the same writer. Then, the search engine is
capable of finding all these entries, but it does not have extra information to decide which of these
versions is the target one. On the contrary, specifying the artists of a given song works better as a
disambiguation mechanism.

Although MERA and Discogs have the same rate of missing results for AOL queries (5%),
the reasons for failing are not the same for both approaches due to the different capabilities of the
algorithms used. As we already mentioned, MERA failed to recognize pieces of classical music
with long names and disordered tokens. This may be solved by integrating into MERA’s pipeline a
token-oriented algorithm such as Jaccard similarity. Further research can be done to check the effect
on false positives due to that decision.

By contrast, Discogs is able to properly match some of these titles of classical music, but it fails
with other entries due mainly to slight differences in song or artists’ names. An insightful example of
this is the query “Cholly (Funk Gettin’Ready to Roll)”. The corresponding entry in Discogs for that
query is stored with a blank after the single quote. The absence of a blank made the search engine
to consider “Gettin’Ready” as a single token, which is not present in any title of the source, which
makes the application to return an empty list of results. An example of a query which is solved with
the desired entry under-ranked is “Feel Like Makin’Love”, written by “Gene McDaniels”. In this
case, the absence of blank between “Makin” and “Love” does not motivate the failure, but the way
of specifying the author of the song. Discogs advanced search system considers alternative forms
of artists, such as MERA does. When matching clean sources such as Discogs and MusicBrainz, an
exact match with some of that forms is enough most of the times to recognize an artist. For instance,
this writer is stored in the system with the forms of “Eugene McDaniels”, “E. McDaniels” or just
“McDaniels”. However, in this case, the form “Gene McDaniels” used in MusicBrainz do not appear
as a recognized alternative form, which causes that the correct entry appears under-ranked in the
result list.

5. CONCLUSION AND FUTURE WORK

We have described MERA, the architecture of a highly configurable system for matching several data
sources containing musical metadata. The main contributions of our approach are:

•	 Graph-based approach in which every piece of information maintains a list of source(s) that
agrees on it, allowing the user to use this information for filtering contents;

•	 A configurable graph navigation system that looks for alternatives identifying forms of each
node to use in the matching process.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

64

We have also proposed a blocking technique based on q-gram indexing and TF-IDF adapted
to MERA’s notion of alternative forms of an entity. We implemented a prototype including these
features and we found that it was effective in more than 94% of the cases under the conditions of
our experiments, which included sources with different levels of data quality. We have compared
our prototype with a well-known search engine music-specialized, outperforming its rate of correct
matches in the two experiments that we developed.

As future work, we plan to improve MERA architecture to produce a system which includes the
following features:

•	 Machine-learning algorithms that can infer adequate configurations through training data;
•	 Improve the scalability and efficiency of graph storage, management and access;
•	 Implementation of a scalable framework with parallel computing possibilities during the

comparison stage.

We will also explore MERA’s approach in a different scope to perform some test comparing our
system with other general purpose approaches.

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

65

REFERENCES

Ananthakrishna, R., Chaudhuri, S., & Ganti, V. (2002). Eliminating fuzzy duplicates in data warehouses. In
Proceedings of the 28th international conference on Very Large Data Bases (pp. 586–597). doi:10.1016/B978-
155860869-6/50058-5

Arrington, M. (2006). AOL proudly releases massive amounts of private data.

Baxter, R., Christen, P., & Churches, T. (2003). A comparison of fast blocking methods for record linkage. In
ACM SIGKDD (Vol. 3, pp. 25–27).

Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E., & Widom, J. (2009). Swoosh: a generic
approach to entity resolution. The VLDB Journal - The International Journal on Very Large Data Bases, 18(1),
255–276.

Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution in relational data. [TKDD]. ACM Transactions
on Knowledge Discovery from Data, 1(1), 5, es. doi:10.1145/1217299.1217304

Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate detection using learnable string similarity measures.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining
(pp. 39–48). doi:10.1145/956750.956759

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy match for online data
cleaning. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data (pp.
313–324). doi:10.1145/872757.872796

Christen, P. (2008). Febrl-: an open source data cleaning, deduplication and record linkage system with a graphical
user interface. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 1065–1068). doi:10.1145/1401890.1402020

Christen, P. (2012). Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection. Springer. Retrieved from https://books.google.es/books?id=LZrT6eWf9NMC

Cohen, W. W., Ravikumar, P., & Fienberg, S. (2003). A comparison of string metrics for matching names and
records. In KDD workshop on data cleaning and object consolidation (Vol. 3, pp. 73–78).

de Assis Costa, G., & de Oliveira, J. M. P. (2016). A blocking scheme for entity resolution in the semantic web.
In Advanced Information networking and applications (AINA), 2016 IEEE 30th international conference on
(pp. 1138–1145).

Do, H.-H., & Rahm, E. (2002). COMA: a system for flexible combination of schema matching approaches.
In Proceedings of the 28th international conference on Very Large Data Bases (pp. 610–621). doi:10.1016/
B978-155860869-6/50060-3

Dong, X., Halevy, A., & Madhavan, J. (2005). Reference reconciliation in complex information spaces.
In Proceedings of the 2005 ACM SIGMOD international conference on Management of data (pp. 85–96).
doi:10.1145/1066157.1066168

Draisbach, U., & Naumann, F. (2010). DuDe: The duplicate detection toolkit. In Proceedings of the International
Workshop on Quality in Databases (QDB).

Dunning, T. E., Kindig, B. D., Joshlin, S. C., & Archibald, C. P. (2011). Associating and linking compact disc
metadata. Google Patents.

Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., & Palpanas, T. (2017). Parallel meta-blocking
for scaling entity resolution over big heterogeneous data. Information Systems, 65, 137–157. doi:10.1016/j.
is.2016.12.001

Elmagarmid, A., Ilyas, I. F., Ouzzani, M., Quiané-Ruiz, J.-A., Tang, N., & Yin, S. (2014). NADEEF/ER:
Generic and interactive entity resolution. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data (pp. 1071–1074). doi:10.1145/2588555.2594511

http://dx.doi.org/10.1016/B978-155860869-6/50058-5
http://dx.doi.org/10.1016/B978-155860869-6/50058-5
http://dx.doi.org/10.1145/1217299.1217304
http://dx.doi.org/10.1145/956750.956759
http://dx.doi.org/10.1145/872757.872796
http://dx.doi.org/10.1145/1401890.1402020
https://books.google.es/books?id=LZrT6eWf9NMC
http://dx.doi.org/10.1016/B978-155860869-6/50060-3
http://dx.doi.org/10.1016/B978-155860869-6/50060-3
http://dx.doi.org/10.1145/1066157.1066168
http://dx.doi.org/10.1016/j.is.2016.12.001
http://dx.doi.org/10.1016/j.is.2016.12.001
http://dx.doi.org/10.1145/2588555.2594511

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

66

Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J., Ross, M., & Staples, G. (2017). Entity reconciliation
in big data sources: A systematic mapping study. Expert Systems with Applications, 80, 14–27. doi:10.1016/j.
eswa.2017.03.010

Fellegi, I. P., & Sunter, A. B. (1969). A Theory for Record Linkage. Journal of the American Statistical
Association, 64(328), 1183–1210. doi:10.1080/01621459.1969.10501049

Fisher, J., Christen, P., Wang, Q., & Rahm, E. (2015). A clustering-based framework to control block sizes for
entity resolution. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 279–288). doi:10.1145/2783258.2783396

Frontini, F., Brando, C., & Ganascia, J.-G. (2015). Domain-adapted named-entity linker using Linked Data. In
Workshop on NLP Applications: Completing the Puzzle co-located with the 20th International Conference on
Applications of Natural Language to Information Systems (NLDB 2015).

Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukrishnan, S., & Srivastava, D. et al. (2001).
Approximate string joins in a database (almost) for free (Vol. 1, pp. 491–500). VLDB.

Guha, S., Koudas, N., Marathe, A., & Srivastava, D. (2004). Merging the results of approximate match operations.
In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30 (pp. 636–647).
doi:10.1016/B978-012088469-8.50057-7

Hall, P. A. V., & Dowling, G. R. (1980). Approximate string matching. [CSUR]. ACM Computing Surveys,
12(4), 381–402. doi:10.1145/356827.356830

Harron, K., Goldstein, H., & Dibben, C. (2015). Methodological developments in data linkage. John Wiley &
Sons. doi:10.1002/9781119072454

Hartnett, J. (2015). Discogs. com. The Charleston Advisor, 16(4), 26–33. doi:10.5260/chara.16.4.26

Hemerly, J. (2011). Making metadata: The case of MusicBrainz.

Hernández, M. A., & Stolfo, S. J. (1995). The merge/purge problem for large databases. SIGMOD Record, 24(2),
127–138. doi:10.1145/568271.223807

Jurczyk, P., Lu, J. J., Xiong, L., Cragan, J. D., & Correa, A. (2008). FRIL: A tool for comparative record linkage.
AMIA ... Annual Symposium Proceedings / AMIA Symposium. AMIA Symposium, 2008, 440. PMID:18998844

Kalashnikov, D. V., & Mehrotra, S. (2006). Domain-independent data cleaning via analysis of entity-relationship
graph. ACM Transactions on Database Systems, 31(2), 716–767. doi:10.1145/1138394.1138401

Kang, H., Getoor, L., Shneiderman, B., Bilgic, M., & Licamele, L. (2008). Interactive entity resolution in relational
data: A visual analytic tool and its evaluation. Visualization and Computer Graphics. IEEE Transactions on,
14(5), 999–1014.

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., & Jurafsky, D. (2013). Deterministic coreference
resolution based on entity-centric, precision-ranked rules. Computational Linguistics, 39(4), 885–916.
doi:10.1162/COLI_a_00152

Monge, A. E., Elkan, C., & Associates. (1996). The Field Matching Problem: Algorithms and Applications. In
KDD (pp. 267–270).

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Surveys, 33(1), 31–88.
doi:10.1145/375360.375365

Newcombe, H. B., & Kennedy, J. M. (1962). Record linkage: Making maximum use of the discriminating
power of identifying information. Communications of the ACM, 5(11), 563–566. doi:10.1145/368996.369026

Ng, V., & Cardie, C. (2002). Improving machine learning approaches to coreference resolution. In Proceedings
of the 40th annual meeting on association for computational linguistics (pp. 104–111).

Nguyen, K., & Ichise, R. (2016). Linked data entity resolution system enhanced by configuration learning
algorithm. IEICE Transactions on Information and Systems, 99(6), 1521–1530. doi:10.1587/transinf.2015EDP7392

http://dx.doi.org/10.1016/j.eswa.2017.03.010
http://dx.doi.org/10.1016/j.eswa.2017.03.010
http://dx.doi.org/10.1080/01621459.1969.10501049
http://dx.doi.org/10.1145/2783258.2783396
http://dx.doi.org/10.1016/B978-012088469-8.50057-7
http://dx.doi.org/10.1145/356827.356830
http://dx.doi.org/10.1002/9781119072454
http://dx.doi.org/10.5260/chara.16.4.26
http://dx.doi.org/10.1145/568271.223807
http://www.ncbi.nlm.nih.gov/pubmed/18998844
http://dx.doi.org/10.1145/1138394.1138401
http://dx.doi.org/10.1162/COLI_a_00152
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1145/368996.369026
http://dx.doi.org/10.1587/transinf.2015EDP7392

International Journal on Semantic Web and Information Systems
Volume 13 • Issue 4 • October-December 2017

67

Papadakis, G., Ioannou, E., Niederée, C., Palpanas, T., & Nejdl, W. (2012). Beyond 100 million entities: large-
scale blocking-based resolution for heterogeneous data. In Proceedings of the fifth ACM international conference
on Web search and data mining (pp. 53–62). doi:10.1145/2124295.2124305

Peng, T., Li, L., & Kennedy, J. (2014). A Comparison of Techniques for Name Matching. [JoC]. Journal on
Computing, 2(1), 55–61.

Rahmani, H., Ranjbar-Sahraei, B., Weiss, G., & Tuyls, K. (2016). Entity resolution in disjoint graphs: An
application on genealogical data. Intelligent Data Analysis, 20(2), 455–475. doi:10.3233/IDA-160814

Rastogi, V., Dalvi, N., & Garofalakis, M. (2011). Large-scale collective entity matching. Proceedings of the
VLDB Endowment, 4(4), 208–218. doi:10.14778/1938545.1938546

Sarawagi, S., & Bhamidipaty, A. (2002). Interactive deduplication using active learning. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining (pp. 269–278). doi:10.1145/775047.775087

Schnell, R., Bachteler, T., & Reiher, J. (2009). Privacy-preserving record linkage using Bloom filters. BMC
Medical Informatics and Decision Making, 9(1), 41. doi:10.1186/1472-6947-9-41 PMID:19706187

Shin, K., Jung, J., Lee, S., & Kang, U. (2015). Bear: Block elimination approach for random walk with restart
on large graphs. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
(pp. 1571–1585). doi:10.1145/2723372.2723716

Song, D., Luo, Y., & Heflin, J. (2017). Linking heterogeneous data in the semantic web using scalable and
domain-independent candidate selection. IEEE Transactions on Knowledge and Data Engineering, 29(1),
143–156. doi:10.1109/TKDE.2016.2606399

Stutzbach, A. R. (2011). MusicBrainz [review]. Notes, 68(1), 147–151. doi:10.1353/not.2011.0134

Swartz, A. (2002). Musicbrainz: A semantic web service. IEEE Intelligent Systems, 17(1), 76–77.
doi:10.1109/5254.988466

Tejada, S., Knoblock, C. A., & Minton, S. (2001). Learning object identification rules for information integration.
Information Systems, 26(8), 607–633. doi:10.1016/S0306-4379(01)00042-4

Tejada, S., Knoblock, C. A., & Minton, S. (2002). Learning domain-independent string transformation weights
for high accuracy object identification. In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 350–359). doi:10.1145/775047.775099

Vatsalan, D., Christen, P., & Verykios, V. S. (2013). A taxonomy of privacy-preserving record linkage techniques.
Information Systems, 38(6), 946–969. doi:10.1016/j.is.2012.11.005

Vatsalan, D., Sehili, Z., Christen, P., & Rahm, E. (2017). Privacy-Preserving Record Linkage for Big Data:
Current Approaches and Research Challenges. In Handbook of Big Data Technologies (pp. 851–895). Springer.

Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Silk-A Link Discovery Framework for the Web of Data
(Vol. 538). LDOW.

Winkler, W. E. (2014). Matching and record linkage. Wiley Interdisciplinary Reviews: Computational Statistics,
6(5), 313–325. doi:10.1002/wics.1317

Yancey, W. E. (2002). BigMatch: A program for extracting probable matches from a large file for record linkage.
Computing, 1, 1–8.

Yu, M., Li, G., Deng, D., & Feng, J. (2016). String similarity search and join: A survey. Frontiers of Computer
Science, 10(3), 399–417. doi:10.1007/s11704-015-5900-5

Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., & Knoblock, C. A. (2016). Unsupervised Entity Resolution
on Multi-type Graphs. In Proceedings of the International Semantic Web Conference (pp. 649–667).

ENDNOTES

1 	 Retrieved 2017-07-21 from https://www.discogs.com/search/advanced

http://dx.doi.org/10.1145/2124295.2124305
http://dx.doi.org/10.3233/IDA-160814
http://dx.doi.org/10.14778/1938545.1938546
http://dx.doi.org/10.1145/775047.775087
http://dx.doi.org/10.1186/1472-6947-9-41
http://www.ncbi.nlm.nih.gov/pubmed/19706187
http://dx.doi.org/10.1145/2723372.2723716
http://dx.doi.org/10.1109/TKDE.2016.2606399
http://dx.doi.org/10.1353/not.2011.0134
http://dx.doi.org/10.1109/5254.988466
http://dx.doi.org/10.1016/S0306-4379(01)00042-4
http://dx.doi.org/10.1145/775047.775099
http://dx.doi.org/10.1016/j.is.2012.11.005
http://dx.doi.org/10.1002/wics.1317
http://dx.doi.org/10.1007/s11704-015-5900-5

