
Shape Expressions: An RDF validation and transformation
language

Eric Prud’hommeaux
World Wide Web Consortium
(W3C) MIT, Cambridge, MA,

USA
eric@w3.org

Jose Emilio Labra Gayo
University of Oviedo

Dept. of Computer Science
C/Calvo Sotelo, S/N
labra@uniovi.es

Harold Solbrig
Mayo Clinic

College of Medicine,
Rochester, MN, USA

ABSTRACT
RDF is a graph based data model which is widely used for seman-
tic web and linked data applications. In this paper we describe
a Shape Expression definition language which enables RDF vali-
dation through the declaration of constraints on the RDF model.
Shape Expressions can be used to validate RDF data, communicate
expected graph patterns for interfaces and generate user interface
forms. In this paper we describe the syntax and the formal seman-
tics of Shape Expressions using inference rules. Shape Expressions
can be seen as domain specific language to define Shapes of RDF
graphs based on regular expressions.

Attached to Shape Expressions are semantic actions which pro-
vide an extension point for validation or for arbitrary code execu-
tion such as those in parser generators. Using semantic actions, it
is possible to augment the validation expressiveness of Shape Ex-
pressions and to transform RDF graphs in a easy way.

We have implemented several validation tools that check if an
RDF graph matches against a Shape Expressions schema and infer
the corresponding Shapes. We have also implemented two exten-
sions, called GenX and GenJ that leverage the predictability of the
graph traversal and create ordered, closed content, XML/Json doc-
uments, providing a simple, declarative mapping from RDF data to
XML and Json documents.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]: Rep-
resentation languages; H.3.5 [Online Information Services]: Web-
based services

General Terms
Theory

Keywords
RDF, Graphs, Validation, Transformation

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEM ’14, September 04 - 05 2014, Leipzig, AA, Germany
Copyright 2014 ACM 978-1-4503-2927-9
http://dx.doi.org/10.1145/2660517.2660523
...$15.00.

RDF [17] can be considered the lingua franca of semantic web
and linked data technologies. RDF has been successfully employed
as a data integration language and there are a number of applica-
tions using RDF as a database technology or as an interoperability
layer.

Despite RDF’s emerging popularity, XML and relational databases
remain far more widely deployed, in part because those technolo-
gies offer good validation tools to define and exchange data con-
forming to specified schemas.

Most data representation languages used in conventional settings
offer some sort of input validation like parsing grammars for domain-
specific languages, XML Schema, RelaxNG or Schematron for XML,
and DDL for SQL. While the distributed nature of RDF affects the
notions of validity, tool chains need to be established to publish
interface definitions and ensure data integrity.

In the case of RDF, although there are standards for inference
like RDF Schema and OWL, these technologies employ Open World
and Non-Unique Name Assumptions that creates difficulties for
validation purposes [22]. The Shape Expressions language (ShEx)
is intended to perform the same function for RDF graphs as Schema
languages to XML. It can be used to validate documents, commu-
nicate expected graph patterns for interfaces, and generate user in-
terface forms and code.

The syntax and semantics of Shape Expressions are designed to
be familiar to users of regular expressions (specially RelaxNG).
The conspicuous difference is that RDF data is a set (of triples)
while regular expression data is a sequence (of characters). Regular
expressions correlate an ordered pattern of atomic characters and
logical operators against an ordered sequence of characters. Shape
Expressions correlate an ordered pattern of pairs of predicate and
object classes and logical operators against an unordered set of arcs
in a graph.

Throughout the paper we will employ a simple example data
model for an issue reporting system with two types of entities: Is-
sue and User. The data model is represented in Figure 1.

The logical operators in Shape Expressions, grouping, conjunc-
tion, disjunction and cardinality constraints, are defined to match
as closely as possible their counterparts in regular expressions lan-
guages like RelaxNG. Our example can be realized in RelaxNG
using the Compact Syntax schema as described in figure 2. Notice
that we allow users to have either a name or a combination of given
names and one family name.

http://dx.doi.org/10.1145/2660517.2660523

Figure 1: Example data model for issue tracking

IssueContent = element :Issue {
element :status
{":assigned" |":unassigned" },

element :reportedBy { UserContent },
element :reportedOn { xsd:dateTime },

(element :reproducedBy { UserContent },
element :reproducedOn { xsd:date }

)?
}
UserContent =
(element :name {xsd:string}
| element :givenName {xsd:string}+,

element :familyName {xsd:string}
),
element :mbox { xsd:anyURI }?

Figure 2: Example data model in RelaxNG

In Figure 3 we represent the issue reporting data model using the
Shape Expressions language1

<IssueShape> {
:status (:unassigned

:assigned),
:reportedBy @<UserShape>,
:reportedOn xsd:date,
(:reproducedBy @<UserShape>
, :reproducedOn xsd:date
)?,
:related @<IssueShape>*

}
<UserShape> {

(foaf:name xsd:string
| foaf:givenName xsd:string+ ,

foaf:familyName xsd:string
),
foaf:mbox shex:IRI ?

}

Figure 3: Example of Shape Expressions to validate issues

1In the examples we omit prefix declarations. Most prefixes are the
common ones that can be retrieved from http://prefix.cc
or a default http://example.org/

Figure 4 presents an instance in Turtle syntax that validates against
the previous Shape Expressions schema.

:Issue1
:status :unassigned ;
:reportedBy :Bob ;
:reportedOn "2013-01-23"^^xsd:date ;
:reproducedBy :Thompson.J ;
:reproducedOn "2013-01-23"^^xsd:date .

:Bob
foaf:givenName "Bob" ;
foaf:familyName "Smith" ;
foaf:mbox <mail:bob@example.org> .

:Thompson.J
foaf:givenName "Joe", "Joseph" ;
foaf:familyName "Thompson" ;
foaf:mbox <mail:joe@example.org> .

Figure 4: Turtle example

The semantics of Shape Expression validation acts as a type in-
ference system which infers a type (shape) for a given node in an
RDF graph. In this example, the validator infers that :Issue1
has shape IssueShape and that :Bob and :Thompson.J have
shape UserShape2.

:Issue1 :IssueShape
:Bob :UserShape
:Thompson.J :UserShape

The Shape Expression language extends the validation function-
ality with the inclusion of semantic actions attached to produc-
tions. These semantic actions can provide extensible validation or
code callbacks familiar to users of parser generators like yacc or
ANTLR.

The paper is structured as follows. The next section introduces
the Shape Expressions language. Section 3 defines the abstract syn-
tax. In section 4 we describe the semantics and in section 5 we
describe how we can employ Shape Expressions to transform RDF
documents to different languages like XML or Json.

2. SHAPE EXPRESSIONS
2The example can be executed using the online RDF Shape Ex-
pressions validator http://rdfshape.weso.es.

http://prefix.cc
http://example.org/
http://goo.gl/MkmFrv

In this section, we present an overview of the Shape Expres-
sions language employing the issue example described in section 1.
Further examples of Shape Expressions are available at: https:
//www.w3.org/2001/sw/wiki/ShEx_Examples. At the
moment of this writing an W3C Working Group charter about RDF
Data Shapes has been created3 so it is possible that the language
will change in the future.

2.1 Labeled Shape Expression
A shape expression is a labelled pattern for a set of RDF Triples

sharing a common subject. Syntactically, it is a pairing of a label,
which can be an IRI or a blank node, and a rule enclosed in brackets
({ }). Typically, this rule is a conjunction of constraints separated
by commas (,).

As an example, the IssueShape described in Figure 3 must
have exactly one ex:status predicate, and the target of that
predicate must be either ex:unnasigned or ex:assigned. It
must have exactly one ex:reportedBy predicate whose target
will be a valid UserShape, and exactly one ex:reportedOn
predicate whose target must be of type xsd:dateTime.

If the shape has a ex:reproducedBy predicate, it must have
a ex:reproducedOn predicate of the appropriate type. Finally,
it may have any number of ex:related predicates, all of which
must conform to the IssueShape type.

2.2 Alternatives
The UserShape declared in Figure 3 has either exactly one

foaf:name of type xsd:string or a combination of at least
one foaf:givenName and one foaf:familyName.

A valid UserShape instance could optionally have one foaf
:mbox that must be an IRI.

Using alternatives and conjunctions, it is trivial to validate RDF
collections. For example, we can declare a list of integers as:

<listOfInt> {
rdf:first xsd:integer

, (rdf:rest (rdf:nil)
| rdf:rest @<listOfInt>
)

}

2.3 Cardinality
The <IssueShape> example includes a group with a cardinal-

ity of 0 or 1.

(ex:reproducedBy @<UserShape>
, ex:reproducedOn xsd:dateTime
)?

This requires that the data have neither or both of those proper-
ties. The example also contains a repetition cardinality:

ex:related @<IssueShape> *

which declares that issues can be related to 0 or n other issues.
Notice that it is also possible to have recursive references.

Cardinality constraints may be expressed as one of ?, +, * or
as one or two integers in {}s.

3http://www.w3.org/2014/data-shapes/charter

2.4 Matching names
The Shape Expression language contains the following possibil-

ities to match names of properties:
Name Example Description
NameTerm foaf:name Matches the given IRI (foaf:name)
NameStem foaf:~ Matches a IRI that starts with a given IRI.

In this case, matches an IRI that starts by
the IRI associated with the foaf prefix.

NameAny - foaf:name Matches with any predicate except those
excluded by the ’-’ operator. In this case,
any predicate except foaf:name

The symbol dot (.) matches with any name and can be repre-
sented as NameAny with an empty set of excluded predicates.

2.5 Matching values
The Shape Expression language contains the following possibil-

ities to match values or objects of triples
Name Example Description
ValueType xsd:date The value has the type expressed by the

IRI
ValueSet (:assigned :

unassigned)
The object is one of the list of nodes in
the ValueSet

ValueAny - xsd:int The value has any objects except those
excluded by the - operator. As in the
case of names, the dot . |symbol can be
used to represent any value.

ValueStem foaf:~ The value starts with the IRI
ValueRef @<UserShape> The value is an IRI or blank node which

has the shape expressed by the value ref-
erence.

2.6 Start Rule
Some grammar languages provide a starting point for validating

documents or generating forms. In Shape Expressions, the starting
point is specified by the start keyword.

It is not necessary to identify a particular node in the graph for
validation operations. Nor is it necessary to provide a start point
for all operations. For instance, generating a sequence of forms ob-
viously needs to start somewhere, but some documents can be val-
idated by optimistically testing each shape expression against each
node in the graph. This exhaustive search is more expensive and
raises the possibility that a document validates or executes actions
in a way that the author of the document did not intend.

2.7 Semantic Actions
The <IssueShape> example above includes both ex:reportedOn

and ex:reproducedOn dateTimes. It would be reasonable in
the interest of data quality to ensure that the ex:reproducedOn
dateTime, if present, were temporally after the ex:reportedOn
dateTime.

While ShEx itself has no built-in functionality for comparing
dateTimes, specific extensions may offer that functionality by means
of semantic actions. Semantic actions have the syntax %lang{ code
%} which mean the Shape Expression validator calls the processor
of language lang with the code code and the values (s,p,o) of the
current triple that is being validated.

The example below includes semantic actions to test date order
in either Javascript or SPARQL. In Javascript, the semantic actions
(marked as %js) check that if there is a :reproducedOn value,
then it must be bigger than the value of :reportedOn which was
saved in the variable report. The SPARQL semantic action does
the same using a FILTER.

https://www.w3.org/2001/sw/wiki/ShEx_Examples
https://www.w3.org/2001/sw/wiki/ShEx_Examples
http://www.w3.org/2014/data-shapes/charter

:reportedOn xsd:dateTime
%js{ report = _.o;

return true; %},
(:reproducedBy @<EmployeeShape>,

:reproducedOn xsd:dateTime
%js{ return _.o.lex > report.lex; %}
%sparql{ ?s ex:reportedOn ?rpt .

FILTER (?o > ?rpt) %}
)?

Notice that semantic actions provide an extension mechanism
which will depend on a validator supporting the corresponding lan-
guage. In section 5 we will show how we can employ semantic
actions to transform RDF to XML and Json using two very simple
languages called GenX and GenJ.

3. ABSTRACT SYNTAX
This section presents the operational semantics of Shape Ex-

pressions. The semantics has been inspired by RelaxNG seman-
tics [23].

As in the case of RelaxNG, we define a simplified abstract syntax
that covers the kernel of the Shape Expressions Language.

For brevity, we concentrate on the main parts of the Shape Ex-
pression language and omit some proposed extensions like shape
inclusion and inheritance, incoming arcs and relation predicates,
language tagged literals, etc.

Schema ::= Schema(rules : Set(Shape))
Shape ::= Shape(label : Label, rule : Rule)
Rule ::= Arc(n : NameClass, v : V alueClass)

| And(rule1 : Rule, rule2 : Rule)
| Or(rule1 : Rule, rule2 : Rule)
| OneOrMore(rule : Rule)
| ActionRule(a : Action)
| Empty

Label ::= IRI | BlankNode
NameClass ::= NameTerm(t : IRI)

| NameAny(excl : Set(IRI))
| NameStem(s : IRI)

V alueClass ::= V alueType(type : IRI)
| V alueSet(s : Set(RDFNode))
| V alueAny(excl : Set(IRI))
| V alueStem(stem : IRI)
| V alueRef(l : Label)

Action ::= Action(label : Label, code : String)
The full syntax of Shape Expressions can be transformed to the

simplified abstract syntax. For example, there is no need to define
optional and star as they can be defined in terms of OneOrMore
(+) and Empty:

Optional(rule) = Or(rule, Empty)
Star(rule) = Or(OneOrMore(rule), Empty)

A common situation when matching an RDF node against a shape
is that the node matches the shape but contains some remaining
triples. By default the Shape Expression language employs open
shapes which means that it will match even if there are some re-
maining triples. It is also possible to use closed shapes in which
case, it only matches if there are no remaining triples.

In section 4, we define the semantics using closed shapes because
any open shape can be defined in terms of a closed shape adding
the conjunction ". .*" which means that the rule can also match
if there are remaining triples.

4. SEMANTICS
In this section we define the semantics of the Shape Expression

language. The semantics is defined formally using axioms and in-

ference rules. Axioms are propositions that are provable uncondi-
tionally. An inference rule consists of one or more antecedents and
exactly one consequent. An antecedent is either positive or nega-
tive. If all the positive antecedents of an inference rule are provable
and none of the negative antecedents are provable, then the conse-
quent of the inference rule is provable. We begin with some basic
definitions on RDF and Shape typings.

4.1 RDF definitions
An RDF model can be defined as a set of RDF triples. Each RDF

triple is a three-tuple 〈s, p, o〉 ∈ (I∪B)× I× (I∪B∪L), where I
is a set of IRIs, B a set of blank nodes, and L a set of literals. The
components s, p, o are called, the subject, the predicate, and the ob-
ject of the triple, respectively. We declare the following operations
on RDF graphs:
} = Empty graph (empty set of triples)
[t] = Singleton set with triple t
to g = Result of adding triple t to graph g
g.triples(s) = subset of g with triples 〈s, _, _〉
g1 ⊕ g2 = Union of graphs g1 and g2.

Notice that in the semantics, g1 ⊕ g2 will be used to divide a
given graph g into two sub-graphs g1 and g2 whose union is g.

4.2 Shape typings
The validation semantics can be seen as a type inference system

where each shape defines a candidate type. A type will be defined
as a mapping from subjects (I ∪ B) to Shape Labels S. We define
the following definitions on shape typings:
� = Empty typing
n→ s : t = Add shape type s to node n in typing t
t1] t2 = Combine typings t1 and t2

4.3 Matching shapes
The expression Γ ` n 's s represents the shape typings gener-

ated when matching a node n with a shape s in the context Γ.
The context contains the current typing which can be accessed

through Γ.typing. The expression Γ{n → t} means the addition
of type t to n in context Γ. The semantic definition of 's is de-
picted in Figure 5.

4.4 Matching Rules
The expression Γ ` g 'r r represents the typings generated

when matching a set of triples g with a rule r. Figure 6 represents
the inference rules that generate those typings.

4.5 Matching Names
Matching names is a boolean expression of the form Γ ` p 'n n

which is true if predicate p matches nameValue n in context Γ.
The semantics is represented in Figure 7 where it defines three rules
which depend of the type of term: NameTerm, NameAny or
NameStem. We use the definitions:

matchStem(stem, iri) = true if iri has stem stem
matchStems(stems, iri) = true if iri has stem one of stems

Notice that matchAny is defined in terms of matchStems be-
cause it matches any value except those that appear in the stems
list.

4.6 Matching values
Matching values is an expression of the form Γ ` p 'v n.

Although in most of the rules, it returns a boolean, in the case of
V alueRef , given that it has to check the typing of another node
in a referenced shape it can return a shape typing. In this way, this

MatchShape
g.triples(n) = ts Γ{n→ shape.label} ` ts 'r shape.rule t

Γ ` n 's shape t

Figure 5: Inference rule to match shapes

Or1
Γ ` g 'r r1 t

Γ ` g 'r Or(r1,r2) t
Or2

Γ ` g 'r r2 t

Γ ` g 'r Or(r1,r2) t

And
Γ ` g1 'r r1 t1 Γ ` g2 'r r2 t2

Γ ` g1 ⊕ g2 'r And(r1, r2) t1] t2

Empty
Γ ` } 'r Empty �

OneOrMore1
Γ ` g 'rr t

Γ ` g 'r OneOrMore r t
OneOrMore2

Γ ` g1 'rr t1 Γ ` g2 'r OneOrMore r t2
Γ ` g1 ⊕ g2 'r OneOrMore r t1] t2

Arc
Γ ` triple.pred 'nn Γ ` triple.obj 'vv t

Γ ` [triple] 'r Arc(n,v) t

Figure 6: Inference rules for Shape expression rules

expression returns a shape typing as the general case. The inference
rules are depicted in Figure 8.

Special care has to be taken for recursive definitions. To avoid
infinite loops, we add the current type to the context in the defini-
tion of matchShape and in the definition of ValueRef we added two
cases: one where the object has already the label shape so there is
no need to check again its shape, and the other where the referenced
object does not have a shape a it is necessary to check it.

5. TRANSFORMING RDF USING SHAPE EX-
PRESSIONS

The Shape Expressions semantics lays out a repeatable call se-
quence for dispatching semantic extensions. The examples in the
previous sections describe how these can be used to extend the ex-
pressiveness of validation.

Parser generators are generally used to map input text into some
native representation of an abstract syntax tree. Because these trees
are highly specialized, we instead demonstrate the concept with a
mapping to an XML tree. This process is frequently referred to as
semantic lowering and requires mapping an RDF graph (unordered
set of triples) to an ordered tree of XML elements and attributes.
(An analogous process meeting the use cases of the Linked Data
Platform would map an RDF graph to a sequence of SQL updates.)

GenX was developed to map RDF clinical care records to the
XML representation being standardized by the HL7 FHIR working
group 4. The expression of FHIR in RDF is more attractive to the
XML-focused participants when the data can then be round-tripped
back to XML. The expressiveness required to map to FHIR/XML
includes: transform RDF IRIs to XML xsd:anyURI, for XML
fragments: control over emitted element and attribute names, ob-
taining values from the objects of triples, simple string transforma-

4http://www.hl7.org/implement/standards/
fhir/

tions of RDF IRIs and literals and arbitrary placement of the created
elements and attributes within the hierarchy.

The syntax of GenX is described in table 1.

Feature Description
$IRI The namespace for an element
<name> The local name for an element
@<name> The name of an attribute
=<expr> An XPath function to transform the value. For

example: @status =substr(19)
= Don’t emit the value as attribute or element. For

example reproduced =
[n] Place the value up n elements in the hierarchy.

For example: [-1]@date
Table 1: GenX Language Summary

As an example, Figure 9 adds GenX semantic actions to the is-
sues example. The output generated by the validation process ap-
plied to 4 is presented in Figure 10.

http://www.hl7.org/implement/standards/fhir/
http://www.hl7.org/implement/standards/fhir/

NameTerm
Γ ` pred = t

Γ ` pred 'n NameTerm(t)

NameAny
Γ ` not(matchStems(excl, pred))

Γ ` pred 'n NameAny(excl)
NameStem

Γ ` matchStem(s, pred)

Γ ` pred 'n NameStem(s)

Figure 7: Matching names

V alueType
Γ ` obj.type = t

Γ ` obj 'v ValueType(t) � V alueSet
Γ ` obj ∈ s

Γ ` obj 'v ValueSet(s) �

V alueAny
Γ ` not(matchStems(excl, obj))

Γ ` obj 'v ValueAny(excl) � V alueStem
Γ ` matchStem(s, obj)

Γ ` obj 'v ValueStem(s) �

V alueRef
Γ ` label : shape Γ{obj → label} ` obj 's shape t

Γ ` obj 'v ValueRef(label) t

Figure 8: Matching values

%GenX{ issue $http://ex.example/xml %}
<IssueShape> {
ex:status (ex:unassigned

ex:assigned)
%GenX{@status =substr(19)%},

ex:reportedBy @<UserShape>
%GenX{ reported = %},

ex:reportedOn xsd:dateTime
%GenX{ [-1]@date %},

(ex:reproducedBy @<UserShape>,
ex:reproducedOn xsd:dateTime
%GenX{ @date %}

)?
%GenX{ reproduced = %},

ex:related @<IssueShape>*
} %GenX{ @id %}
<UserShape> {
(foaf:name xsd:string

%GenX{ full-name %}
| foaf:givenName xsd:string+
%GenX{ given-name %},
foaf:familyName xsd:string
%GenX{ family-name %}

),
foaf:mbox shex:IRI ?

%GenX{ email %}
}

Figure 9: Issue example extended with GenX semantic actions

<issue xmlns="http://ex.example/xml"
id="Issue1" status="unassigned">

<reported date="2013-01-23">
<given-name>Bob</given-name>
<family-name>Smith</family-name>
<email>mail:bob@example.org</email>

</reported>
<reproduced date="2013-01-23">
<given-name>Joe</given-name>
<given-name>Joseph</given-name>
<family-name>Thompson</family-name>
<email>mail:joe@example.org</email>

</reproduced>
</issue>

Figure 10: XML output generated by validator with GenX se-
mantic actions

The value of the Shape Expressions semantic actions can be
demonstrated by both the utility of individual language extensions
like GenX and the simplicity with which they can be added to a
validator.

It is trival to add a language called GenJ to emit a customized
dialect of JSON-LD [21]. The presence of a label for the semantic
action permits actions in multiple languages to be expressed in the
same schema.

6. IMPLEMENTATIONS AND APPLICATIONS
Currently, there are 4 implementations of Shape Expressions in

progress:

• FancyShExDemo5 was the first prototype implementation in
Javascript. It handles semantic actions and implements GenX

5http://www.w3.org/2013/ShEx/FancyShExDemo

http://www.w3.org/2013/ShEx/FancyShExDemo

and GenJ. It supports a form-based system with dynamic val-
idation during the edition process and SPARQL queries gen-
eration.

• JSShexTest6, developed by Jesse van Dam is another Javascript
implementation. It supports both the SHEXc and SHEX/RDF
syntax of Shape Expressions and contains a validation se-
mantics for testing purposes based on truth tables.

• Shexcala7: an implementation developed in Scala originally
based on the type inference semantics presented in this pa-
per. It supports validation against an RDF file and against
an SPARQL endpoint. We have also created RDFShape8, an
online RDF validator tool based on Shexcala.

The initial Shexcala implementation used a backtracking monad
similar to the semantics of logic programming languages [12].
Later, we implemented a more efficient algorithm based on
regular expression derivatives [5] which was also used in Re-
laxNG [6].

• Haws9: a Haskell implementation based on the type infer-
ence semantics presented in this paper and implemented us-
ing a backtracking monad. This implementation can be seen
as an executable monadic semantics of Shape Expressions [13].

Shape Expressions have been employed for data portal documen-
tation. For example, the RDF data model of the WebIndex10 and
LandPortal11 projects have been documented using Shape Expres-
sions. The documentation defines templates for the different shapes
of nodes and for the triples that can be retrieved when dereferenc-
ing those nodes. For example, the template of an observation in the
WebIndex data portal is defined as:

<Observation> {
rdf:type (qb:Observation)

, rdfs:label rdf:langString ?
, cex:md5-checksum xsd:string ?
, cex:computation @<Computation>
, dcterms:issued xsd:date ?
, dcterms:publisher (:WebFoundation)
, qb:dataSet @<DataSet>
, wfonto:ref-area @<Area>
, cex:indicator @<Indicator>
, wfonto:ref-year @<Year>
, cex:value xsd:float
}

These templates define the dataset structure in an intuitive way
and can be used to generate specialized visualizations for the dif-
ferent shapes when browsing the data portal.

One important aspect is that shapes are different from types.
Both portals are using a similar model based on RDF Data Cube
where the main entities are observations of the same type qb:Observation.
However, the shapes of observation resources in each portal are
different. For example, in the LandPortal we used the time ontol-
ogy while in the WebIndex we just used years codified as integers.
Separating shapes from types offers a good separation of concerns:

6https://github.com/jessevdam/shextest
7http://labra.github.io/ShExcala/
8http://rdfshape.weso.es
9http://labra.github.io/haws/

10http://data.webfoundation.org/webindex/2013
11http://landportal.weso.es

types work at a semantic level while shapes are more intended as
interfaces between linked data portals.

Shape Expressions are also being employed in the development
of more specialized validators. For example, the Vaskos project12 is
developing a SKOS validator using a combination between Shape
Expressions and SPARQL queries.

7. RELATED WORK
There has been an increasing interest on RDF validation lan-

guages. Most of the approaches were presented at the W3c Work-
shop on RDF Validation [18] and can be summarized in the follow-
ing categories:

• Inference based approaches, which try to adapt RDF Schema
or OWL to express validation semantics. The use of Open
World and Non-unique name assumption limits the valida-
tion possibilities. In fact, what triggers constraint violations
in closed world systems leads to new inferences in standard
OWL systems. [7, 22, 14] propose the use of OWL expres-
sions with a Closed World Assumption to express integrity
constraints.

• SPARQL-based approaches use the SPARQL Query Lan-
gugage to express the validation constraints. SPARQL has
much more expressiveness than Shape Expressions and can
even be used to validate numerical and statistical computa-
tions [11]. However, we consider that the Shape Expres-
sions language will be more usable by people familiar with
validation languages like RelaxNG. Nevertheless, Shape Ex-
pressions can be translated to SPARQL queries. In fact, we
have implemented a translator from Shape Expressions to
SPARQL queries. This translator combined with semantic
actions expressed in SPARQL can offer the same expressive-
ness as other SPARQL approaches with a more succinct and
intuitive syntax.

SPARQL Inferencing Notation (SPIN)[9] constraints asso-
ciate RDF types or nodes with validation rules. These rules
are expressed as SPARQL ASK queries where true indi-
cates an error or CONSTRUCT queries which produce in-
stances of spin:ConstraintViolation. SPIN con-
straints use the expressiveness of SPARQL plus the seman-
tics of the ?this variable standing for the current subject.
The authors of SPIN have also created a data quality con-
straints library 13 with numerous SPIN templates for com-
mon patterns.

There have been other proposals using SPARQL combined
with other technologies, Simister and Brickley[20] propose a
combination between SPARQL queries and property paths
which is used in Google and Kontokostas et al [10] pro-
posed Databugger a Test-driven framework which employs
SPARQL query templates that are instantiated into concrete
quality test queries. We consider that Shape Expressions can
also be employed in the same scenarios as SPARQL while
the specialized validation nature of Shape Expressions can
lead to more efficient implementations.

• Grammar based approaches define a domain specific lan-
guage to declare the validation rules. OSLC Resource Shapes [19]
have been proposed as a high level and declarative descrip-
tion of the expected contents of an RDF graph expressing

12http://vaskos.chemaar.cloudbees.net/
13http://semwebquality.org/

https://github.com/jessevdam/shextest
http://labra.github.io/ShExcala/
http://rdfshape.weso.es
http://labra.github.io/haws/
http://data.webfoundation.org/webindex/2013
http://landportal.weso.es
http://vaskos.chemaar.cloudbees.net/
http://semwebquality.org/

constraints on RDF terms. Shape Expressions have been in-
spired by OSLC although they offer more expressive power.

Dublin Core Application Profiles [8] also define a set of val-
idation constraints using Description Templates with less ex-
pressiveness than Shape Expressions.

The main inspiration for Shape Expressions has been RelaxNG [23],
a Schema language for XML that offers a good trade-off between
expressiveness and validation efficiency. The semantics of Re-
laxNG has also been expressed using inference rules in the spec-
ification document [16] and is based on tree grammars [15]. In the
case of Shape Expressions the underlying semantics can be defined
in terms of regular bag expresions [4].

Transforming RDF to different formats has also been challeng-
ing and several approaches have appeared. XSLT+SPARQL [2]
proposed to add functions to XSLT that provided the ability to
query SPARQL endpoints and to use standard XSLT to process the
SPARQL XML results format.

The lowering use case can in principle be met within the W3C
standards of SPARQL and XSLT. This involves a SPARQL query to
generate SPARQL XML Results followed by XSLT of those results
into the desired XML structure. One problem is that SPARQL re-
sults are tabular (like SQL) which means that the tree structure must
be extracted by ordering the results and comparing successive rows
in order to detect when a new branch of the tree is required. This
transformation process is not easy and can be error-prone while the
Shape Expressions validator automatically handles it.

XSPARQL[1, 3] merges SPARQL queries into XQuery. The ex-
pressivity of XSPARQL is considerably higher than that of GenX
though, of course, lower than the more general semantic action
mechanism in Shape Expressions. In service to the lowering use
case, the GenX expressivity is sufficient for practical use cases like
the FHIR RDF-to-XML one, as well as presenting a terser and po-
tentially more intuitive declaration of the transformation.

8. CONCLUSIONS AND FUTURE WORK
Shape Expressions can be seen as a Domain Specific Language

to define the shape of RDF graphs. They offer a more expressive
way to define sets of graph shapes than OSLC’s Resource Shapes
or Dublin Core’s Application Profiles. There are trade-offs between
expressiveness and implementability, but compared to schema lan-
guages in other data models, Shape Expressions represent a conser-
vative point in that spectrum, emulating mostly the expressiveness
of RelaxNG.

As a language, it offers an opportunity to publish and enforce
defined interfaces, as well as to serve as a yacc-like compiler com-
plier for semantic web data. From a tooling perspective, it can be
used stand-alone to validate RDF graphs and endpoints. Combined
It can also be used to generate SPARQL queries which perform that
same task on widely deployed infrastructure.

The complexity of the validation algorithms for Shape Expres-
sions offers some theoretical challenges related to regular bag ex-
pressions that have been tackled in [4]. We have recently imple-
mented a regular expression derivatives algorithm which seems more
efficient although it is necessary to establish a common framework
to asess the performance metrics of the different approaches.

It is the authors’ hope that Shape Expressions be critically exam-
ined with respect to intuitiveness, utility and aesthetics as the RDF
world shifts its focus more on the critical problems of validation,
transformation and interface specification.

9. REFERENCES

[1] W. Akhtar, J. Kopecky, T. Krennwallner, and A. Polleres.
XSPARQL: Traveling between the XML and RDF worlds
and avoiding the XSLT pilgrimage. In M. Hauswirth,
M. Koubarakis, and S. Bechhofer, editors, Proceedings of the
5th European Semantic Web Conference, LNCS, Berlin,
Heidelberg, June 2008. Springer Verlag.

[2] D. Berrueta, J. E. Labra, and I. Herman. XSLT+SPARQL:
Scripting the semantic web with SPARQL embedded into
XSLT stylesheets. In Proceedings of 4th Workshop on
Scripting for the Semantic Web. 5th European Semantic Web
Conference (ESWC2008), 2008.

[3] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and
A. Polleres. Mapping between RDF and XML with
XSPARQL. Journal on Data Semantics, 1:147–185, 2012.

[4] I. Boneva, J. E. Labra, S. Hym, E. G. Prud’hommeau,
H. Solbrig, and S. Staworko. Validating RDF with Shape
Expressions. ArXiv e-prints, (1404.1270), Apr. 2014.

[5] J. A. Brzozowski. Derivatives of regular expressions. J.
ACM, 11(4):481–494, Oct. 1964.

[6] J. Clark. An algorithm for RELAX NG validation.
http://www.thaiopensource.com/relaxng/
derivative.html, 2002.

[7] K. Clark and E. Sirin. On RDF validation, stardog ICV, and
assorted remarks. In RDF Validation Workshop. Practical
Assurances for Quality RDF Data, Cambridge, Ma, Boston,
September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[8] K. Coyle and T. Baker. Dublin core application profiles.
separating validation from semantics. In RDF Validation
Workshop. Practical Assurances for Quality RDF Data,
Cambridge, Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[9] H. Knublauch. SPIN - Modeling Vocabulary. http:
//www.w3.org/Submission/spin-modeling/,
2011.

[10] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven
evaluation of linked data quality. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14,
pages 747–758, Republic and Canton of Geneva,
Switzerland, 2014. International World Wide Web
Conferences Steering Committee.

[11] J. E. Labra and J. M. Alvarez Rodríguez. Validating
statistical index data represented in RDF using SPARQL
queries. In RDF Validation Workshop. Practical Assurances
for Quality RDF Data, Cambridge, Ma, Boston, September
2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[12] J. E. Labra, J. M. Cueva, M. C. Luengo, and A. Cernuda.
Specification of logic programming languages from reusable
semantic building blocks. Electronic Journal on Theoretical
Computer Science, 62:220–233, 2002.

[13] J. E. Labra Gayo. Reusable semantic specifications of
programming languages. In 6th Brazilian Symposium on
Programming Languages, 2002.

[14] B. Motik, I. Horrocks, and U. Sattler. Adding Integrity
Constraints to OWL. In C. Golbreich, A. Kalyanpur, and
B. Parsia, editors, OWL: Experiences and Directions 2007
(OWLED 2007), Innsbruck, Austria, June 6–7 2007.

[15] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy
of xml schema languages using formal language theory.
ACM Trans. Internet Technol., 5(4):660–704, Nov. 2005.

http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.w3.org/2012/12/rdf-val
http://www.w3.org/2012/12/rdf-val
http://www.w3.org/Submission/spin-modeling/
http://www.w3.org/Submission/spin-modeling/
http://www.w3.org/2012/12/rdf-val

[16] OASIS Committee Specification. RELAX NG Specification:.
http://relaxng.org/spec-20011203.html, 2001.

[17] RDF Working Group W3C. RDF - semantic web standards.
http://www.w3.org/RDF/, 2004.

[18] RDF Working Group W3c. W3c validation workshop.
practical assurances for quality rdf data, September 2013.

[19] A. G. Ryman, A. L. Hors, and S. Speicher. OSLC resource
shape: A language for defining constraints on linked data. In
C. Bizer, T. Heath, T. Berners-Lee, M. Hausenblas, and
S. Auer, editors, Linked data on the Web, volume 996 of
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[20] S. Simister and D. Brickley. Simple application-specific
constraints for rdf models. In RDF Validation Workshop.
Practical Assurances for Quality RDF Data, Cambridge,
Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[21] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and
N. Landström. JSON-LD 1.0: AJSON-based Serialization
for Linked Data.
http://www.w3.org/TR/json-ld/, 2014.

[22] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity
constraints in OWL. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-10). AAAI,
2010.

[23] E. van der Vlist. Relax NG: A Simpler Schema Language for
XML. O’Reilly, Beijing, 2004.

http://www.w3.org/2012/12/rdf-val
http://www.w3.org/TR/json-ld/

	1 Introduction
	2 Shape Expressions
	2.1 Labeled Shape Expression
	2.2 Alternatives
	2.3 Cardinality
	2.4 Matching names
	2.5 Matching values
	2.6 Start Rule
	2.7 Semantic Actions

	3 Abstract Syntax
	4 Semantics
	4.1 RDF definitions
	4.2 Shape typings
	4.3 Matching shapes
	4.4 Matching Rules
	4.5 Matching Names
	4.6 Matching values

	5 Transforming RDF using Shape Expressions
	6 Implementations and Applications
	7 Related work
	8 Conclusions and future work
	9 References

