
Kukulcan: Semantic Web Framework for Knowledge Management in the
Domain of Digital Circuits

F. Edgar Castillo-Barrera1, R. Carolina Medina-Ramı́rez2,
J. Emilio Labra Gayo3, and S. Masoud Sadjadi4

1School of Engineering, Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, México
2Department of Electrical Engineering, Universidad Autónoma Metropolitana, Distrito Federal, México

3Department of Computer Science, Universidad de Oviedo, España
4School of Computing and Information Sciences, Florida International University (FIU), Miami, USA

Abstract

In recent years Ontologies have boomed as artifacts to
represent a domain and they are considered an important
key to the success of the Semantic Web. Thus, Humans and
Machines would be able to understand and share informa-
tion on the Web which are also important in the context
of Knowledge Management. Although the study of the re-
lation between Ontologies and Knowledge Management is
not new and this is applied in Knowledge Engineering, Se-
mantic Web Techniques such as Reasoners and Ontology
queries have been recently studied and applied. A Frame-
work based on Semantic Web Techniques can give more op-
tions for sharing, increasing, reusing, and capitalizing the
knowledge in organizations and companies. In digital cir-
cuits domain, a Semantic Web Framework can be employed
for teaching logic gates (and, or, not, xor, etc.), and this ap-
proach has been deemed as an effective way for capturing
and using the knowledge of the logic gates on assembling
circuit systems. This knowledge can be reused by new de-
velopers gaining time and reducing circuits manufacturing
costs. In addition, the correct assembling among logic gates
and the right output of a circuit can be validated by using
semantic techniques. In this paper, we describe a semantic
web framework based on a core ontology, a Pellet reasoner
and SPARQL queries for Knowledge Management based on
the domain of digital circuits. We use an example and a
prototype called Kukulcan to explain our approach.

1 INTRODUCTION

New methods for verifying and validating logic circuits
are neccesary during the design phase. These methods have
to ensure the funcionality expected by the circuits designer
before building it, and at the same time, simulating its be-

havior. This helps to prevent economic losses. Another
important factor to consider is the circuit models reusabil-
ity. The time for developing a complex circuit using a cir-
cuit repository decrease the cost of the project and reduce
the learning curve of new people in the project. In this
context, semantic technologies seem relevant. We can use
Ontologies[41] in order to represent a logic circuit base on
logic gates (and, or, not, etc.) and to verify a circuit design.
Each connection of the circuit can be validated by means
of ontology properties [41] and reasoners [40]. The new
knowledge obtained for each part of the circuit assembled,
can be stored in an ontology [32] by means of metadata, in
this way the knowledge is capitalized [39][33]. This knowl-
edge can be used by new developers or new members of
the project to reduce manufacture time. In consequence,
the company decreases costs. The circuits behavoir can be
modelled by SPARQL queries. In fact, a complex circuit
could be represented by one SPARQL query. The Ontology
written in OWL-DL [36][26] (is stored as an XML file) can
be exchanged among different systems and can be shared by
all people in the company by means of the company intranet
website.

The rest of the paper is structured as follows. In Sec-
tion 2 we give the related work of ontologies based on logic
circuits domain. In Section 3 we briefly explain concepts
about Semantic Web, Ontologies, Core Ontologies, Rea-
soners, SPARQL queries and Semantic Web Techniques.
Section 4 describes our approach for the Verification and
Validation of logic circuits in a Semantic Factory Frame-
work. In Section 5 we show the feasibility of our technique
by describing an example and a prototype called Kukulcan.
Finally, in Section 6 we conclude our work.

Figure 1. Semantic Web Techniques for Knowledge Managment in the Domain of Logic Circuits

2 RELATED WORK

There are several works about Ontologies and its rela-
tion with Knowledge Management and Knowledge Man-
agement Systems [1][6][34][15][31]. In the case of ontolo-
gies based on digital circuits for teaching is mostly repre-
sented by work of Robal et al.[38] who wrote an ontology-
based intelligent learning object for teaching the basics of
digital logic. Robal’s ontology is oriented for teaching the
basics of digital logic, our ontology can be used for teach-
ing, validating and verifying logic circuits based on logic
gates. An important method for verifying logic circuits is
found in the work of J.N. Hooker and H. Yan [25]. The
authors propose a new tautology checking algorithm for de-
termining the correct boolean function in a circuit. This
algorithm is non-numeric and equivalent to a numeric algo-
rithm obtained by applying Benders descomposition. This
proposal is similar to an integer programming problem,
which requires calculations and computational resources.
Although in our proposal the designer of the circuit does
not apply formal verification methods, ontologies are based
on formal logic (description logic [5][4]). In contrast to
Banders descomposition method, our proposal is a semi-
automatic verification method.

3 SEMANTIC WEB TECHNIQUES

The Semantic Web [12][11][37] is an extension of the
World Wide created by the british scientist Tim Berners-
Lee who defines it as ”a web of data that can be processed
directly and indirectly by machines” [9]. This is a collection

of standards, a set of tools [14], and a community that shares
data. Semantic Technology is a concept in computer science
which goal is to give semantics to data[20]. Supported by
semantic tools that provides semantic information about the
meaning of words (RDF, SPARQL, OWL, and SKOS). The
Web is a key focal. Semantic Web Techniques are methods
and techniques based on semantic tools which allow us to
manipulate information also. Semantic Web technologies
enable people to create data stores on the Web, build vocab-
ularies, and write rules for handling data [24].

3.1 Ontologies and Knowledge Management

Ontologies are the key for Semantic Web goals and they
are an important block of the semantic web stack [9]. An
Ontology [21][9][23][11][41] is defined by Gruber as ”a
specification of a conceptualization” [21]. An Ontology
defines the basic terms used to describe and represent an
area of knowledge, as well as the rules for combining terms
and relations used to define extensions to the vocabulary.
Thus, defines the vocabulary and the meaning of that vo-
cabulary, are used by people and applications that need to
share domain information. More specifically, an ontology
is a formal representation of knowledge with semantic con-
tent which allows the companies and organizations to obtain
information[17]. Such information can be retrieved by per-
forming SPARQL queries or using a rule-based inference
engine [42]. In our case, the logic circuits are the domain
area. Knowledge management was defined by Alavi and
Leidner [1] as ”a systemic and organizationally specified
process for acquiring, organizing and communicating both
tacit and explicit knowledge of employees so that other em-

Figure 2. Classes, Instances, Properties and Data Semantization screen

ployees may make use of it to be more effective and pro-
ductive in their work”. A Semantic Web Framework can
comply with the above definition. For that reason, we have
selected this definition to support our approach in the field
of Knowledge Management.

3.1.1 Core Ontologies

In philosophy, a Core Ontology [13] is a basic and minimal
ontology consisting only of the minimal concepts required
to understand the other concepts. It must be based on a
core glossary that humans can understand. A Core Ontol-
ogy is a complete and extensible ontology that expresses
the basic concepts in a certain domain. In this work we
have built a core ontology which consists of a logic gates
glossary which developers of circuits understand well. We
consider that these kind of ontologies can be reused. The
ontology classes have been defined using n3 notation. On-
tologists of these kind of ontologies do not require a com-
plex methodology [17] to do it, in fact, following the On-
tology Development 101 [16] or An eXtreme method for
developing lightweight ontologies [27] are enough.

3.2 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF) which is a W3C Recommendation
[43]. RDF Schema (RDFS) is extending RDF vocabulary
for describing taxonomies of classes and properties. It also
extends definitions for some of the elements of RDF, for
example it sets the domain and range of properties and re-

lates the RDF classes and properties into taxonomies us-
ing the RDFS vocabulary. We use Web Ontology Language
OWL which extends RDF and RDFS. Its primary aim is
to bring the expressive and reasoning power of description
logic to the semantic web. Querying language is necessary
to retrieve information [28] from input model (instances of
the ontology and its relations). Unfortunately, not every-
thing from RDF can be expressed in Description Logics
(DL) [5][4]. For example, the classes of classes are not per-
mitted, and some of the triplet expressions would make no
sense in DL. To partially overcome this problem, and also
to allow layering within OWL, three types of OWL are de-
fined (FULL, Lite and DL). At this moment, we only have
decided to explore semantic queries in SPARQL instead of
applying another action such as: production rules [42].

3.3 Reasoners

A reasoner [40] is a program which its main task is
checking the ontology consistency. It verifies if the ontol-
ogy contains contradictory facts, axioms or wrong prop-
erties among concepts. Besides, new knowledge can be
inferred after applyed it. The most popular reasoners are
Cerebra, FACT++, KAON2, Pellet, Racer, Ontobroker,
OWLIM. Pellet [40] is an open-source Java based OWL-
DL reasoner. In our verification process we use Pellet for
checking the consistency of the logic circuit ontology and
classify the taxonomy. We select the Pellet reasoner, be-
cause it gives an explanation when an inconsistency was
detected.

Figure 3. 1-bit Full Adder

4 A SEMANTIC WEB FRAMEWORK

Kukulcan is factory framework of semantic models
which focuses on maximising the level of reuse in two di-
mensions: architecture design and logic circuits. One of
the most important features of this framework is enabling
knowledge reuse in logic circuits modelling using Semantic
web techniques [19]. The aim of this framework is to al-
low to develop logic circuits using a friendly interface and
a graphical arquitectural description language. Our main
contributions are twofold. First, we define a framework that
allows us to reusing logic circuit. Second, our approach
supports the validation of the output values obtained from
the logic circuit during the design phase. A prototype of
the framework involves a visual editor. Figure 4. The tool
makes use of the library Flamingo and the Ribbon compo-
nent [29] implemented in Java. We have used Jena API
[30][35] and Java language [18] for programming that and
NetBeans IDE 7.0 [10]. The process of verification, within
the Kukulcan framework, is done at very high level, using
the ontologies information among logic gates and circuits
to be assembled. Each logic gate is represented in a graphic
way. That information, introduced in the ontology during
the Data Semantization process, is evaluated and after that
the reasoner verify if it is correct. In Addition, we capture
the new knowledge in this new logic circuit, called ”Cap-
sule”. In our framework, a Capsule has a graphical rep-
resentation which is stored as a new logic circuit with its
own characteristics. The process to verify the assembling
among logic gates is easy for an user who building circuits.
He introduce his model into the framework by means of a
file or by the editor (the option Create Instances Vocabu-
lary). Kukulcan transforms his vocabulary (logic gates that
the user needs for building his circuit) from a text file into
an ontology instances. Then, the user only has to estab-
lish its relations using the ontology properties (object and
datatype) and he has to associate the logic gates instances
created with classes defined in the logic circuit Ontology.
This process is called Data Semantization See Figure 2.

4.1 A Core Ontology for Logic Circuits

We propose a core ontology called OntoCircuit which
has the minimum concepts (logic gates) neccesary to

represent the 1-bit Full Adder circuit. And, Or, Xor, Not,
Nand, Nor and Xnor are universal gates and they do not
require to be validate by experts. Besides, we only need
3 or 5 competency questions to validate the ontology
[22]. These are adventages in this kind of ontologies
which foment the reuse of them. Core Ontology is built
by means of classes and relations among concepts. The
Ontology is showed in Figure 2. A Logic Gates Ontology
was created for capturing and verifying information about
the input logic circuit models. This ontology consists of
3 classes (Circuit, Bits and Gate), 10 Object Properties
(hasInput1, hasInput2, hasInput3, isTypeGate, andOutput,
orOutput, notOutput, nandOutput, norOutput, xorOutput
), 1 Datatype Property (hasName) and 25 instances. The
notation n3 is used by the ontology, because is a valid
RDFS and OWL-DL notation. The Ontology use RDFS
and OWL-DL language [2][36]. They are fundamentally
based on descriptive logic languages. OWL-DL is a recom-
mendation of the W3C [43]. The OWL-DL ontologies have
the ability of: Automatic reasoning, Easy to be distributed
through many systems, Compatibility with web standards
for accessibility, Opening and extensibility.

4.2 Logic Circuits Verification: a Semantic Ap-
proach

Semantic verification and validation is the process which
uses an Ontology and Semantic Technologies (SPARQL
queries) to guarantee the correct construction of logic cir-
cuits with specific connections and outputs. The seman-
tics of assembling the logic gates are described with object
properties. An important aspect of the logic gates to con-
sider during the assembling is the Input and Output connec-
tions. A logic gate has one output, but different number of
input connections. The logic gate connections are based on
the output of one of them using as input in the others.

5 BUILDING A 1-BIT FULL ADDER
IN KUKULCAN FRAMEWORK

A 1-bit full adder is a logic circuit with 3 bit binary in-
puts (A, B, CIN) and two single bit binary outputs (OUT-
PUT, COUT). Having both carry in and carry out capabil-
ities, the full adder is highly scalable and found in many
cascaded circuit implementations. For that reason, we have
chosen this circuit in this work. The truth table using the
instance notation is showed in 4. This circuit is built with 5
logic gates (2 xor, 2 and, 1 or), as showed in Figure 3. The
logic circuit model used for describe an 1-bit Full Adder
circuit was made in Kukulcan Framework using its graph-
ical interface of logic gates, and is shown in figure 4. The
input model is created by the user who selects classes and

relation among concepts and he creates the logic gates in-
stances (:and1, :and2, :xor1, :xor2 and :or). In this case the
input model only has 5 logic gates and we can create its
instances and relations among them using the Kukulcan’s
menus (create instances vocabulary).

5.1 Assembling Verfication using The Pellet Rea-
soner

The Core Ontology written in OWL-DL, allow us to de-
fine restrictions which Pellet can verify during the consis-
tency checking process. For instance, the following code
establishes that the and gate has only 1 output, because a
FunctionalProperty is defined for :andOutput Object Prop-
erty.

:andOutput a owl:ObjectProperty ;
rdfs:domain :Gate ;
rdfs:range :Bits ;

rdf:type owl:FunctionalProperty .

An interesting property of the ontology used in this work
is a blank node. It is a node in an RDF graph representing
a resource without URI or literal. We used it as variable. If
we put the same blank node, the result for this node has to
be the same. In our example below, :c1 and :c2 are blank
nodes (working as variables). The example shows how to
:xor1 and :and2 gates are forced to have the same input
(:c2).

:xor1 :isTypeGate _:c1. # :xor1 is a member
of xor gates

_:c1 :hasInput2 _:c2. # :xor1 requires 2
input values

A difference with Logic Programming Paradigm, we can
check our types using ontologies. In particular when we
create a new logic gate, for example :and2, we do not have
to introduce all input and output values. In this case, it
is only neccesary to establish the property relation :and2
:isTypeGate :and . Besides, the ontology allow us to see
circuits and gates saving in the ontology at the same time
because the Gate class is a subclass of Circuit.

:Circuit a owl:Class .
:Gate rdfs:subClassOf :Circuit .
:isTypeGate a owl:ObjectProperty ;

rdfs:domain :Gate ;
rdfs:range :Gate .

The disjointWith property allow to verify restrictions in
the input model. For example a logic gate is not a bit, these
two classes are different. Defining disjoint classes is also
possible [3].

:Gate rdfs:subClassOf :Thing ;
owl:disjointWith :Bits .

All instances created, properties (object and datatype) es-
tablished among instances, and blank nodes in the Ontology
are checked by the reasoner Pellet during the consistency
verification process.

5.2 Output Validation using a SPARQL Query

The second step after the reasoner have checked the on-
tology circuit consistency is to apply a SPARQL query for
validating the correct output of 1-bit fadder circuit. In our
case, we have defined a query which describes the circuit
and obtain the output for given input values. Of course, all
this process is transparent, for the user. He does not need
to know nothing about ontologies, reasoners or SPARQL
queries, only the manager of the ontology system has to
know about that. We can think that SPARQL is the ver-
sion of SQL for ontologies. Besides, we can use variables
in the queries, constraints, filtering information, logic op-
erators, if statements and more. Each triples (each line af-
ter) are linking by variables which begin with a question
mark. In this code ?type1 and ?AB are examples of vari-
ables. The same name of variable imply the same value
to look for in the query. We can execute and edit queries
in Kukulcan framework because the Jena API allowed us
to use SPARQL queries in our framework programmed in
Java language. The las step, when the logic circuit has been
verified and validated, consists on storing the project inde-
pendent of the ontology or include it in the core ontology. It
is important to note that these challenges increase the reuse
of this ontology and decrease the time in the development
of future circuits. Benefiting the economy of companies
(Knowledge Capitalization [33][39]). In our example, part
of the code included in the core ontology was:

:fulladder :hasName "1-bit full
adder"ˆˆxsd:string .

:fulladder :hasInput3 :0_0_0 .
:fulladder :hasInput3 :0_0_1 .
:fulladder :hasInput3 :1_1_1 .
:0_0_0 :fullAdderOutput :0 .
:0_0_0 :fullAdderOutput :1 .
:1_1_0 :fullAdderOutput :0 .

:

In the code above, there are mainly three properties: has-
Name, hasInput3 and fullAdderOutput. The meaning of the
hasName property is an string with the name of the logic
circuit. But the most interesting properties are hasInput and
fullAdderOutput. The first is formed by a circuit instance (in
this case called fulladder), second the name of the property
hasInput3 where the number 3 means that this gate receive
3 input values and finally with 3 bits values ending with a
period. The second property begins with the 3 bits values
following the fullAdderOuput property and finish with the
bit output value with a period. The colon before each ele-
ment and the ending period are only n3 notation [7][8].

Figure 4. Consistency checking (1), Full Adder Truth Table (2) and SPARQL query execution (3)

6 CONCLUSIONS

Knowledge Management using Semantic Web Tech-
niques, in organizations and companies based on Digital
Circuits, is possible by means of core ontologies, reason-
ers, and SPARQL queries. Ontologies are usually expressed
in a logic-based language (Description-Logic), enabling de-
tailed, sound, meaningful distinctions to be made among
the classes, properties and relations. Core Ontologies give
more expressive meaning, maintains computability, do not
require the validation of experts or apply a complex method-
ology for its construction. This core ontology for logic cir-
cuits increase the reuse of it and decrease the time in the
development of future circuits. The use of an core ontol-
ogy of logic circuits allowed us to validate the output of
the 1-bit Full Adder and verify the correct assembling of its
gates using the Pellet reasoner and a SPARQL query with
semantics in comparison with a classic SQL query. The
queries on the ontology are simple and easy to do for all
users whereas a classic SQL query in a database requires
computational knowledge. In this paper we have presented
a Semantic Web framework called Kukulcan and described
Semantic Web Techniques used for Knowledge Managment
on the Digital Circuits domain.

7 Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. OISE-

0730065.

References

[1] M. Alavi and D. Leider. Knowledge management systems:
emerging views and practices from the field. In System Sci-
ences, 1999. HICSS-32. Proceedings of the 32nd Annual
Hawaii International Conference on, pages 8–pp. IEEE,
1999.

[2] D. Allemang and J. Hendler. Semantic Web for the Working
Ontologist: Effective Modeling in RDFS and OWL. Morgan
Kaufmann, 2011.

[3] F. E. Antoniou Grigoris and V. H. Frank. Introduction to
semantic web ontology languages. 2005.

[4] F. Baader. The description logic handbook: theory, imple-
mentation, and applications. Cambridge Univ Pr, 2003.

[5] F. Baader, I. Horrocks, and U. Sattler. Description logics
as ontology languages for the semantic web. Mechanizing
Mathematical Reasoning, pages 228–248, 2005.

[6] R. Benjamins, D. Fensel, and A. Gómez-Pérez. Knowledge
management through ontologies. CEUR Workshop Proceed-
ings (CEUR-WS. org), 1998.

[7] T. Berners-Lee. N3 notation:
http://www.w3.org/designissues/notation3.html.

[8] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web
tutorial using n3. In Twelfth International World Wide Web
Conference, 2003.

[9] T. Berners-Lee, J. Hendler, O. Lassila, and Others. The se-
mantic web. Scientific American, 284(5):34–43, 2001.

[10] T. Boudreau. NetBeans: the definitive guide. O’Reilly Me-
dia, 2002.

[11] K. Breitman, M. A. Casanova, and W. Truszkowski. Se-
mantic Web: Concepts, Technologies and Applications
(NASA Monographs in Systems and Software Engineering).
Springer-Verlag London, 2006.

[12] W. P. Davies John, Stunder Rudi. Semantic web technolo-
gies trens and research in ontology-based systems. 2006.

[13] M. Doerr, J. Hunter, and C. Lagoze. Towards a core ontology
for information integration. Journal of Digital information,
4(1), 2011.

[14] W. M. K. B. Duineveld A.J., Stoter R. and B. V.R. Wonder-
tools? a comparative study of ontological engineering tools.
2000.

[15] D. Fensel, F. Van Harmelen, M. Klein, H. Akkermans,
J. Broekstra, C. Fluit, J. van der Meer, H. Schnurr, R. Studer,
J. Hughes, et al. On-to-knowledge: Ontology-based tools
for knowledge management. In Proceedings of the eBusi-
ness and eWork, pages 18–20, 2000.

[16] N. F.Noy and D. L.McGuinness. Ontology development
101:a guide to creating your first ontology. March 2006.

[17] A. Gómez-Pérez, M. Fernández-López, and O. Corcho.
Ontological engineering with examples from the areas of
knowledge management,e-commerce and the semantic web.
2003.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java (TM) Lan-
guage Specification, The (Java (Addison-Wesley)). Addison-
Wesley Professional, 2005.

[19] J. Gracia, J. Liem, E. Lozano, O. Corcho, M. Trna,
A. Gómez-Pérez, and B. Bredeweg. Semantic techniques
for enabling knowledge reuse in conceptual modelling. The
Semantic Web–ISWC 2010, pages 82–97, 2010.

[20] T. Gruber. Ontolingua: A mechanism to support portable
ontologies. pages KSL 91–66. 1992.

[21] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. pages 907–928. 1995.

[22] M. Gruninger and M. S. Fox. The role of competency ques-
tions in enterprise engineering. In Proceedings of the IFIP
WG5.7 Workshop on Benchmarking - Theory and Practice,
1994.

[23] N. Guarino. Formal ontology in information systems. pages
3–15. IOS-Press, June 1998.

[24] S. Heiner and V. H. Frank. Information sharing on the se-
mantic web. 2005.

[25] J. Hooker and H. Yan. Logic circuit verification by benders
decomposition. Principles and Practice of Constraint Pro-
gramming: The Newport Papers, MIT Press (Cambridge,
MA, 1995), pages 267–288, 1995.

[26] M. Horridge, N. Drummond, J. Goodwin, A. Rector,
R. Stevens, and H. Wang. The manchester owl syntax. OWL:
Experiences and Directions, pages 10–11, 2006.

[27] M. Hristozova and L. Sterling. An extreme method for de-
veloping lightweight ontologies. In In Workshop on Ontolo-
gies in Agent Systems, 1st International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2002.

[28] M. Hwang, H. Kong, and P. Kim. The design of the ontology
retrieval system on the web. volume 3, pages 1815 –1818,
feb. 2006.

[29] Java.net. Flamingo. http://java.net/projects/flamingo/, 2010.
[30] Jena. Jena a semantic web framework for java. 2000.

[31] I. Jurisica, J. Mylopoulos, and E. Yu. Using ontologies for
knowledge management: An information systems perspec-
tive. In Proceedings of the Annual Meeting-American So-
ciety For Information Science, volume 36, pages 482–496.
Information Today; 1998, 1999.

[32] S. L. and M. B. Ontology evolution within ontology editors.
volume 62, pages 53–62. September 2002.

[33] F.-M. Lesaffre and V. Pelletier. A business case of the use of
ontologies for knowledge capitalization and exploitation.

[34] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and
R. Volz. Ontologies for enterprise knowledge management.
Intelligent Systems, IEEE, 18(2):26–33, 2003.

[35] B. McBride. Jena: Implementing the rdf model and syntax
specification, 2001.

[36] D. McGuinness, F. Van Harmelen, et al. Owl web ontol-
ogy language overview. W3C recommendation, 10:2004–03,
2004.

[37] K. T. S. Michael C. Daconta, Leo J. Obrst. The Seman-
tic Web: A guide to the future of XML, Web Services and
Knowledge Management. Wiley Computer Publishing, Inc.,
111 River Street Hoboken, NJ, jun. 2003.

[38] T. Robal, T. Kann, and A. Kalja. An ontology-based in-
telligent learning object for teaching the basics of digital
logic. In Microelectronic Systems Education (MSE), 2011
IEEE International Conference on, pages 106–107. IEEE,
2011.

[39] B. D. Rodriguez-Rocha, F. E. Castillo-Barrera, and
H. Lopez-Padilla. Knowledge capitalization in the automo-
tive industry using an ontology based on the iso/ts 16949
standard. volume 0, pages 100–106. IEEE Computer Soci-
ety, Los Alamitos, CA, USA, sep. 2009.

[40] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pel-
let: A practical owl-dl reasoner. Web Semantics: science,
services and agents on the World Wide Web, 5(2):51–53,
2007.

[41] S. H. Staab S., Studer R. and Y. Sure. Knowledge processes
and ontologies. volume 16, pages 26–34. Jan-Feb 2001.

[42] SWRL. Swrl:a semantic web rule language.
[43] W3C. http://www.w3.org/consortium/. 1994.

