
Computers in Human Behavior 26 (2010) 210–217
Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh
Interactive web environment for collaborative and extensible diagram
based learning

José Barranquero Tolosa a, Jose E. Labra Gayo a, Ana B. Martínez Prieto a, Sheila Méndez Núñez a,
Patricia Ordóñez de Pablos b,*

a Department of Computer Science, University of Oviedo, Asturias, Spain
b Department of Business Administration, University of Oviedo, 33071 Asturias, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 11 November 2009

Keywords:
Collaborative
Extensible
Interactive
Web environment
Diagram design
Groupware usability
User tracking
Graph visualization
Semantic web
0747-5632/$ - see front matter Crown Copyright � 2
doi:10.1016/j.chb.2009.10.003

* Corresponding author. Tel.: +34 985106206.
E-mail addresses: barranquero@gmail.com (J.B. To

Labra Gayo), belenmp@uniovi.es (Ana B. Martínez P
gmail.com (S.M. Núñez), patriop@uniovi.es, patricia
(P.O. de Pablos).
Nowadays there is a growing need of ubiquity for learning, research and development tools, due to the
portability and availability problems concerning traditional desktop applications. In this paper, we sug-
gest an approach to avoid any further download or installation. The main goal is to offer a collaborative
and extensible web environment which will cover a series of domains highly demanded by different
kinds of working groups, in which it is crucial to have tools which facilitate the exchange of information
and the collaboration among their members. The result of those interactions would be the development
of one or several diagrams accessible from any geographical location, independently of the device
employed. The environment can be adapted through personalized components, depending on the type
of diagram that the user wants to interact with and the users can also create new elements or search
and share components with other users of the community. By means of this environment, it will be pos-
sible to do research on the usability of collaborative tools for design diagrams, as well as research on the
psychology of group interactions, assessing the results coming from the employment of known method-
ologies, techniques, paradigms or patterns, both at an individual and at a collaborative group level.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Sometimes, the portability problem among different platforms
can be simplified using virtual machines. However, the availability
or application ubiquity problem is more complex. In this paper, we
suggest an approach which avoids any further download or instal-
lation, thanks to the use of graphical web browsers and W3C stan-
dard technologies.

From this ubiquity perspective, the main goal is to develop an
interactive web environment, where a group formed by several
collaborative users, which could be geographically separated,
interact synchronously to learn and practice diagram design issues
in an easy way. These working groups could be multidisciplinary,
embracing approaches like e-Learning (Sigala, 2007), research or
development and could also form a virtual community (Fuchs,
2007).

In this paper we treat diagrams as graph structures. A simple
definition for graph is: ‘‘representations with nodes and edges to
model the relationships within the space represented”, proposed by
009 Published by Elsevier Ltd. All

losa), labra@uniovi.es (Jose E.
rieto), sheilamendeznunez@

ordonezdepablos@yahoo.com
Kargar and Schraefel (2006). And the fact is that this kind of graph
structured information is present in many areas, like science taxo-
nomies, semantic networks, UML diagrams, organizational charts,
navigation diagrams and web maps, biology, chemistry, data struc-
tures, Petri nets, data flows, logic programming, circuit schematics,
scene graphs, document management systems, conceptual maps,
etc. (Herman, Melançon, & Marshall, 2000).

We start discussing some key issues about groupware usability
measurements. After that, we will go through a brief overview of
graph visualization background. Once explained all this related
work, we present our proof of concept prototype and finally we ex-
pose our conclusions and future work.
2. Groupware usability issues

Every groupware application can be classified according to a set
of taxonomies. One of the best known is the one proposed by
Johansen et al. (1991), reviewed by Ellis (1991), and presented in
Table 1. Our studies will be mainly focused on distributed and syn-
chronous approaches, like real-time collaboration among groups;
but we also plan to cover distributed and asynchronous scenarios,
like teacher–student interactions or challenges.

As mentioned in the article by Baker, Greenberg, and Gutwin
(2001), nowadays there are known problems related to the
rights reserved.

http://dx.doi.org/10.1016/j.chb.2009.10.003
mailto:barranquero@gmail.com
mailto:labra@uniovi.es
mailto:belenmp@uniovi.es
mailto:sheilamendeznunez@ gmail.com
mailto:sheilamendeznunez@ gmail.com
mailto:patriop@uniovi.es
mailto:patriciaordonezdepablos@yahoo.com
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh


Table 1
Groupware spatiotemporal taxonomy (Johansen et al., 1991).

Same time Different time

Same location Face to face interaction Asynchronous
Different location Distributed and

synchronous
Distributed and
asynchronous

J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217 211
evaluation of the usability of groupware applications. They remark
that it is required an appropriate methodology of groupware
usability evaluation and propose an adapted version of Nielsen’s
(1994) heuristics, focusing on shared visual workspaces and
supported by Gutwin’s conceptual framework for the mechanics
of collaboration (Gutwin & Greenberg, 2000).

Nielsen (1994) defines heuristics as ‘‘general rules used to de-
scribe common properties of usable interfaces”. Baker et al. (2001)
adapt this technique to obtain eight low-cost heuristics for specific
groupware shared visual workspaces:

(1) Provide the means for intentional and appropriate verbal
communication.

(2) Provide the means for intentional and appropriate gestural
communication.

(3) Provide consequential communication of an individual’s
embodiment.

(4) Provide consequential communication of shared artifacts
(i.e. artifact feedthrough).

(5) Provide protection.
(6) Management of tightly and loosely-coupled collaboration.
(7) Allow people to coordinate their actions.
(8) Facilitate finding collaborators and establishing contact.

The key issue around these rules is awareness, defined as ‘‘the
up-to-the-moment understanding of another person’s interaction with
the shared workspace” (Gutwin & Greenberg, 2004). They also af-
firm that awareness information increases robustness, coordina-
tion and efficiency of groupware applications, identifying three
generic questions to answer in this context and detailed in Table 2.

The three first rules cover intentional and unintentional com-
munication among collaborators, like instant messaging and indi-
vidual’s embodiment representation, which can be successfully
achieved with telepointers and avatars. Those interaction mecha-
nisms allow collaborative users to collect information about each
other’s movements and what are they doing (Baker et al., 2001;
Gutwin & Greenberg, 2004).

The fourth rule is focused on shared artifacts, assuming that
users need to know what is happening. This can be accomplished
by showing all users the initial, in-action and final state of such
artifacts while being manipulated by some user (Gutwin, 1997).
Change history is additionally proposed in Baker et al. (2001).
Table 2
Workspace awareness elements and questions (Gutwin and Greenberg, 2004).

Category Element Specific questions

Who Presence Is anyone in the workspace?
Identity Who is participating? Who is that?
Authorship Who is doing that?

What Action What are they doing?
Intention What goal is that action part of?
Artifact What object are they working on?

Where Location Where are they working?
Gaze Where are they looking?
View How much can they see?
Reach How far can they reach?
The fifth rule deals with security issues about what can do each
user within the workspace during a specific session. Margaritis, Fi-
das, and Avouris (2007) evaluate some of the floor control concerns
and conclude that the groups adapt their interaction to the work-
space constraints, obtaining similar quality and performance
results.

The sixth rule evaluates the viewport sharing among users. In
this sense, we have adopted a relaxed WYSIWIS (What You See Is
What I See), described by Stefik, Bobrow, Foster, Lanning, and Tatar
(1987). More recent works studies advanced visibility techniques
like radar view, over-the-shoulder view or cursor’s eye view of the
collaborators (Gutwin & Greenberg, 2004).

The seventh rule is intended to solve coordination problems like
duplication of actions, overlapping and others explained in more
detail on Gutwin’s thesis (1997).

The last rule focuses on searching collaborators and establishing
contact with them. A good example is the room metaphor proposed
by Greenberg and Roseman (2003), where it is easy to find out who
is online and allows users to freely jump between synchronous and
asynchronous interaction.

We are playing special emphasis in the usability of the collabo-
rative and communicative mechanisms among users, trying to ap-
ply and evaluate all the eight heuristics as we will discuss later on.

In addition to groupware heuristic evaluation, automatic evalu-
ation of usability can be done by user tracking. Ivory and Hearst
(2001) review the state of the art of these mechanisms of auto-
matic evaluation and it is an excellent start point to understand
these approaches.

Fidas, Katsanos, Papachristos, Tselios, and Avouris (2007) stress
the growing importance of remote usability evaluation, including
user tracking. Moreover, the survey by Hilbert and Redmiles
(2000) studies potential information to be extracted from user
interface events. Finally, aspect oriented programming is suggested
by Tarta and Moldovan (2006), focusing this problem from another
point of view.
3. Graph visualization background

There are a lot of authors who have revisited this research area,
with many excellent overviews of the state of art (Battista, Eades,
Tamassiaa, & Tollis, 1994; Battista, Eades, Tamassiaa, & Tollis,
1999). Special mention to the survey by Herman et al. (2000),
where the visualization and navigation of graphs is studied
through the point of view of graph structured information visuali-
zation, like Semantic Web approaches.

The main factor in graph visualization is the size of the graph to
be drawn. As Herman et al. (2000) affirm in their survey: ‘‘It is well
known that comprehension and detailed analysis of data in graph
structures is easiest when the size of the displayed graph is small. In
general, displaying an entire large graph may give an indication of
the overall structure or a location within it but makes it difficult to
comprehend”.

Related usability issues involve different cognitive aspects like
environment, color, visual attention, space perception, images, text
and others; explained in more detail in Ware’s (2000) book. We
recommend the study and test of these concepts as qualitative
improvements for graph tools usability.

However, there are many other constraints, which affect the
visualization of graphs. For example, planarity is checked in order
to minimize edge crossing, but it can get quite complicated when
we have to deal with other aesthetic rules, like restrictions about
the type of edges (straight lines only, same length, weight distrib-
uted, symmetry, etc.), minimization of the full area to be drawn
and others (Battista et al., 1999). For further reading about



212 J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217
aesthetic rules, refer to the work of Purchase (Purchase, 1998;
Purchase, Cohen, & James, 1995).

Herman et al. (2000) remark that ‘‘minimization of the full graph
area might be an important criterion in applications” and Purchase
et al. (1995) demonstrate that ‘‘reducing the crossings is by far the
most important aesthetic, while minimizing the number of bends
and maximizing symmetry have a lesser effect”.

Moreover, predictability address that two similar graph struc-
tures have to lead to two similar graph visualizations, in order to
ensure that the mental map of the user is preserved (Herman, Del-
est, & Melançon, 1998; Misue, Eades, Lai, & Sugiyama, 1995). This
can be especially relevant when working with the same graph or
incremental versions of the same graph structure.

Finally, time complexity has to be reviewed to guarantee that
each kind of graph is visualized with the proper layout algorithm
in terms of time consumption (Herman et al., 2000).

3.1. Overview of graph layout algorithms

Battista et al. (1999) and Mutzel et al. (1997) provide a good start-
ing point to layout algorithms for graph representation. They classify
graph layout algorithms according to the following factors: rank
assignment, crossing minimization, hierarchy, sub-graph extraction,
planarity, compaction, augment, edge insertion and layout itself.

There is huge list of possible layout types. The classical tree lay-
out and its variants like H-trees, radial trees, cone trees, balloon
trees, tree-maps, onion graphs or spanning trees, usually provide
good predictability and time complexity, which is linear in the
number of nodes (Herman et al., 2000). Even they can preserve
information about hierarchy in most cases.

Taking up planarity again, it can be an important issue to take
care about, particularly in circuit based diagrams. Nevertheless,
its complexity has been proved to be NP when dealing with upward
planarity (rectilinear edges or edges with the same direction), and
linear on basic undirected graphs (Hopcroft & Tarjan, 1974).

Sugiyama layout (Sugiyama, Tagawa, & Toda, 1989) is intended
to cover general directed graphs, applying an approach called lay-
ering. This technique consists in gathering all the nodes in several
layers, in accordance with their intrinsic properties, like similarity,
weight or relevance among them.

Tutte (1963) was one of the first authors to propose a heuristic
for edge crossing minimization, based on the premise that ‘‘a node
should be kept close to its neighbours”.

On the other hand, Force-Directed or Spring layouts are based on
physical models, with variable complexity, usually determined by
its quality. The major problem with them is that they are non-
deterministic and highly unpredictable, thus they are less interest-
ing for information visualization due to subsequent interaction
problems (Herman et al., 2000). However, they can be very useful
when dealing with interactive workspaces, as well as client–server
distributed applications, especially agent based approaches.

Another vast collection of layout algorithms are those based on
grid positioning, which focuses on the distribution of the nodes by
coordinates (Battista et al., 1994); however, it is claimed (Herman
et al., 2000) that this kind of layouts do not play a central role in
graph visualization.

3.1.1. Spanning and clustering
Sub-graph extraction techniques are well suited for information

visualization because they address the minimization of the size of
the data to be viewed. Spanning trees are a good example of layout
algorithms using those techniques, where the problem is turned
into looking for the better spanning tree of the graph. The complex-
ity of that task can be reduced to O(N logN) as is asserted in Her-
man et al. (1998) and Eades (1992). It can also alleviate
predictability issues of graph representation (Herman et al., 2000).
Spanning trees can be optimized by applying a clustering mech-
anism, which can also improve navigational factors as we will dis-
cuss later on. By now, starting from semantic information view,
clustering can be done not only over the structure of the graph,
but over the semantic relations among nodes and edges. Thus we
can achieve a better approach for context and detail together, tak-
ing advance of the knowledge wrapped by the whole graph (Kargar
& Schraefel, 2006).

With a well balanced algorithm in terms of the relation be-
tween the number of cluster and nodes, we can achieve a good per-
formance in processing and navigating over graph structures
(Herman et al., 2000). Other approaches are based on hierarchical
clustering, like Statecharts (Harel, 1987), and node metrics as men-
tioned in Herman et al. (2000).
3.2. Graph structured semantic information interaction

Nowadays many researchers are discussing about the relevance
of Semantic Web in the evolution of the Web itself. We bear out
this idea in an optimistic way and propose a simple prototype of
a web environment for collaborative and extensible diagram de-
sign, supported by Semantic Web techniques for information per-
sistence and supporting visualization, navigation and edition of
Semantic Web information as its key feature. Thus, we face up
the two main questions in Semantic Web interaction, ‘‘What I want
to do/know?” and ‘‘Is graph visualization the best choice to represent
semantic information?”

The first question deals with bringing at the same time the suf-
ficient and necessary information that the user needs to face up a
concrete task (Kargar & Schraefel, 2006). The second one is quite
more difficult to answer, because of the absence of profuse and rig-
orous research in that area. Herman et al. (2000) declare that the
question would be ‘‘Is there an inherent relation among the data ele-
ments to be visualized?” On the other side, Kargar and Schraefel
(2006) conclude that ‘‘everything can be represented by a graph,
and yet we do not use graphs to represent everything”.

Deeper on, other questions come on scene: Where am I? What
is related? Whose interest is being served? What activity is being
supported? Is graph visualization the best tool for examining graph
and clustering information? Is it useful? Those questions have not
been solved yet and need much more research work over them.

Zoom and Focus + Context mechanisms have been studied since
many years ago and there are a lot of articles published over differ-
ent fields of human–computer interaction. In this case, zoom fits
well in graph navigation, since graph representations are usually
based on simple geometrical figures instead of raster images,
avoiding aliasing problems (Herman et al., 2000). A broader ap-
proach is semantic zooming, where content is revealed increas-
ingly, taking support of clustering techniques like mentioned in
previous section.

It is obvious that when we zoom in a graph we lose information
about the context and when we zoom out we lost details. The best
known solution is to provide an overview of the entire graph,
which can guarantee a minimal context, but further research is
needed in this area as is required in Kargar and Schraefel (2006).
Nowadays, researches are focused on fisheye distortion, interaction
between focus distortions and the subjacent layout of the graph,
semantic Focus + Context and even semantic fisheye (Herman
et al., 2000).
4. A prototype for collaborative and extensible diagram design

By now, we have developed a prototype of the environment
where a group of users can interact synchronously to design and
share general-purpose diagrams, supporting the main web



Fig. 1. Diagram change history.

J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217 213
browsers. Objects can be drawn in the workspace design surface
and any user can make connections between them, stressing
functionalities like action history with undo/redo possibilities
and information about authorship, as shown in Fig. 1.

The current prototype supports full scalable vector graphics like
SVG and VML and matrix-based geometrical 2D transformations,
thanks to the use of Dojo Toolkit 0.9.0 (Dojo Foundation, 2007).
Fig. 2 shows a basic example of this kind of graphics.
Fig. 2. Basic 2D shapes an
Since the beginning, we have decided to adopt a relaxed WYSI-
WIS viewport interaction (Baker et al., 2001; Stefik et al., 1987), be-
cause we realize that freedom of interaction is essential for a
satisfactory user experience. We have also developed a limited
privilege management module; however, export/import and ver-
sion control is planned to be included in subsequent prototypes,
as well as improvements concerning awareness issues mentioned
in Section 2.
d transformations.



214 J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217
4.1. System architecture

The system is designed with a modular, extensible and flexible
architecture, which allows enlarging and adapting the environ-
mental functionality, thanks to the integration or actualization of
new components or the proper management of the existing ones,
by means of a specific tool manager, based on Semantic Web
technologies.

As a web application, the system can be divided in two indepen-
dent parts. On the one hand, the server follows an adapted version
of the MVC (Model-View-Controller) architectural pattern to obtain
a correct separation of concerns (Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 1996; Reenskaug, 2003). On the other hand,
the client consists of an editor tool based on components, inspired
in the JHotDraw framework (Gamma & Eggenschwiler, 1998), try-
ing to take advantage of current dynamic scripting languages of
web browsers, as well as AJAX libraries, which facilitate the devel-
opment of rich internet applications. We justify this choice due to
the fact that MVC is a proved and customizable architectural pat-
tern for web applications and JHotDraw is widely referenced sam-
ple framework, and even now it is continuously been improved
because of its widespread and efficient use for desktop drawing
applications.
4.1.1. Server side
The main goal of the design of the Server is to obtain a scalable

subsystem regarding the number of users, and extensible in func-
tionality for new research needs, incorporating new services, filters
or components which will allow to apply data mining techniques
by mathematical models and statistics.

As Fig. 3 shows, we have applied the n-layers pattern for the
internal architecture of the server, through the combined use of
the extended patterns Service Locator and Business Delegate, and
thus augmenting its scalability possibilities (Sun Microsystems,
2002).

The view is in charge of transferring information to the client,
through web pages and AJAX interactions. The controller manages
Fig. 3. Server MVC ba
the working flow, depending on the state and the events that hap-
pen, and the model captures the access to the resources and data.

The use of a controller that centralizes access and manages the
flow of the application allows reconfiguring the sequence of oper-
ations done for each request without the need to directly modify
the involved elements. At the same time, the business logic of
the model is designed with the goal that the system will function-
ally evolve in subsequent extensions, avoiding the need to intro-
duce bigger structural changes, thanks to the Business Wrappers
layer.

Finally, the Abstract Factory layer, based on DAO (Data Access
Object) design pattern, uncouples the persistence system employed
through a family of objects that encapsulate the data access to the
repository. The management of transactions is done in a transpar-
ent way through the use of the Transaction Manager module in the
infrastructure layer, which is supported in the DAO Abstract Fac-
tory layer to abstract the specific implementation details of each
type of repository.
4.1.2. Client side
The design of the client is aimed to offer the biggest freedom of

configuration, personalization and functional extensibility. The fact
that it is based on AJAX technologies facilitates this goal, given that
it can load new components at runtime, obtaining them directly
from the server, thanks to the employment of dynamic languages
in the client. Among other options, the editor can be adapted using
personalized toolbars which depend on the type of diagram that
the user wants to design, creating new elements for the environ-
ment, and searching and sharing components with other users of
the community.

We collect an operations record which offers the possibility of
undoing and redoing the changes made by any collaborator in real
time, including a version control system for each diagram and ex-
port facilities to different graphical formats like SVG, VML, etc. We
will also offer communicative mechanisms among users to provide
useful and efficient collaboration, with successful awareness infor-
mation about collaborators.
sed architecture.



J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217 215
In order to obtain all this, an optimal design is required; hence,
we are planning to readapt the best features of the JHotDraw
framework (Gamma & Eggenschwiler, 1998) with the support of
a dynamic language based on prototypes, like JavaScript, including
improvements which can be very useful to conduct usability tests
of our tool, like monitoring user steps or the interaction among col-
laborative working groups. We realized that the architecture pro-
posed in this framework deals very well with our objectives and
we are improving it with some issues around distributed brow-
ser-based clients.
4.1.3. Client–server communication
There are different information flows between client and server

depending on the specific operation; basic data interchange is pre-
sented through a global point of view in Fig. 4.

The editor’s configuration process involves all those actions that
only affect the client that performs them, like modifying zoom fac-
tor, managing tool bars, changing visual look and feel, etc. These
changes are stored as simple XML documents on server. The issues
about this kind of relaxed WYSIWIS interaction are explained in
more detail in Stefik et al. (1987).

The synchronization of changes made by a working group on
the same resource requires the updating of those changes in real
time on every client through the server, assuming the managing
of the change history and the resolution of conflicts among ver-
sions. We use JSON notation in this scenario because it is inter-
preted and evaluated automatically by the client’s JavaScript
engine and the resulting JSON messages have a very small size
when compared to other formats (Crockford, 2006).

Moreover, we have designed this client–server interaction to be
completely extensible, allowing client improvements without ma-
jor server changes. This feature is achieved through duck-typing
possibilities of JavaScript, which enables the development and
integration of new drawing primitives efficiently. We can include
new client functionalities directly because of the change history
Fig. 4. Data interc
module only validates the actions that can be applied over a node
or edge, easily extended thought semantic definitions, and the data
exchanged is generic, covering only target object identity, action
performed and parameters. This approach also simplifies database
design and maintenance, storing basic JSON undo and redo infor-
mation for each action.

In contrast, for the versions control module it may be more
appropriate to use an XML format, which is easily extensible and
processed by the server, as well as much more portable. The use
of such a format would split each version of the same diagram in
a separate document, which can be easily validated by XML Sche-
ma. In this sense, GraphML, a language for graph representation
(Brandes, 2000), stands out and it is used successfully in many
commercial products, as yFiles (yWorks, 2004). Notwithstanding,
we want to support RDF in order to facilitate the use and edition
of this semantic vocabulary.

Finally, to export/import diagrams and components, we are
developing filters to accept a variety of formats that may allow dif-
ferent levels of interoperability with other applications, as the al-
ready discussed GraphML or others like RDF, SVG vector graphics
images, raster images, PDF documents, etc.
4.1.4. User interaction and layout algorithms
Our published prototype does not provide layout features be-

cause we have focused our efforts in the usability of the editor
for now, but we plan to integrate them by web services, treated
as intelligent agents (Etzioni & Weld, 1995; Wooldridge & Jennings,
1995). This approach enables the design of layout algorithms as
distributed processes, obtaining a better user experience. Users
can invoke these agents as special collaborators, which modify
the diagram incrementally and even interact with other human
or computer collaborators with a domain specific language to ad-
just algorithms parameters in real time.

We are always focusing on preserving the mental map of the
users (Herman et al., 1998; Misue et al., 1995), so the layouts
hange flows.



216 J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217
provided will be adapted to be as deterministic as possible. More-
over, our agent-based approach can be integrated easily with the
change history module for undo and redo support; and the layout
will be persistent between sessions, economizing resources of the
environment.
5. Conclusion and future work

There are a growing number of examples of web applications
based on AJAX, although not all could justify their use, given the
disadvantages posed. One of them is the overload of requests to
the server in case the mechanisms for the exchange and synchro-
nization are not properly planned, which could be worsened due
to memory leaks in poorly designed clients, leading to an unsatis-
factory user experience. However, there are many advantages
within a well-structured and extensible AJAX client. Among others,
the chance of fully customize the working environment, share re-
sources and tools, collaborate with other users in real time and ac-
cess the environment from any system that includes a graphical
web browser with a JavaScript engine.

Currently, there are many prototypes, libraries and functional
systems like JViews, InfiView, yFiles, mind42, Cumulate Draw,
mxGraph, Flowchart, Gliffy, etc.; mainly based on applets, flash
and AJAX. These systems enable users to design different types of
diagrams by using web technologies, although some of them offer
limited functionality or are proprietary solutions. We have also
developed a functional Open Source prototype of the system, based
on AJAX and JSON, which allows several users from different web
browsers to collaborate synchronously in the same diagram (Bar-
ranquero & Labra, 2007) and we are performing a deeper study
of these examples to publish a thorough classification.

Once achieved an appropriate degree of functionality, we want
to extract significant samples of the use of the environment to car-
ry out research on the tool usability, as well as on the psychology of
group interactions, assessing the results coming from the employ-
ment of known methodologies, techniques, paradigms or patterns,
both at an individual and at a collaborative group level.

Furthermore, content-based or semantic clustering and layering
requires domain-specific knowledge, which can be supported by
collaborative environments and social networks (Ehrlich, 2006),
by terms of using AJAX and Web 2.0 technologies. We have real-
ized that the domain experts of each field of application must be
encouraged to participate actively in the design of the visualization
and interaction components in an easy and intuitive way. The envi-
ronment would be adapted by means of personalized components,
depending on the type of diagram that the user wants to interact
with; creating new elements for the environment, and searching
and sharing components with other users of the community. How-
ever, those components are not limited to information visualiza-
tion ones, users could customize agent-based layout algorithms
or even toolbars and interface views to support community needs.
References

Baker, K., Greenberg, S., & Gutwin, C. (2001). Heuristic evaluation of groupware
based on the mechanics of collaboration. In Paper presented at 8th IFIP working
conference on engineering for human–computer interaction (EHCI’01), Toronto,
Canada.

Barranquero, J., & Labra, J. E. (2007). Web based diagram editor (Alpha version)
[Computer software]. Available from Open Source project at Sourceforge.net.

Battista, G., Eades, P., Tamassiaa, R., & Tollis, I. G. (1994). Algorithms for drawing
graphs: An annotated bibliography. Computational Geometry: Theory and
Applications, 4(5), 235–282.

Battista, G., Eades, P., Tamassiaa, R., & Tollis, I. G. (1999). Graph drawing: Algorithms
for the visualization of graphs. New Jersey: Prentice Hall.

Brandes, U. et al. (2000). The GraphML file format. Available from http://
graphml.graphdrawing.org Accessed 07.05.08.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-
oriented software architecture: A system of patterns. New York: John Wiley and
Sons.

Crockford, D. (2006). JSON: The fat-free alternative to XML. Paper presented at
Proceedings of XML 2006, Boston. Available from http://www.json.org/
fatfree.html Accessed 05.05.08.

Dojo Foundation (2007). The dojo toolkit (Version 0.9.0) [Software Toolkit]. Available
from http://download.dojotoolkit.org/release-0.9.0/ Accessed 21.02.07.

Eades, P. (1992). Drawing free trees. Bulletin of the Institute for Combinatorics and its
Applications, 10–36.

Ehrlich, D. M. (2006). Social network survey paper. International Journal of Learning
and Intellectual Capital, 3(2), 166–177.

Ellis, C. (1991). Groupware: Some issues and experiences. Communications of the
ACM, 34, 39–58.

Etzioni, O., & Weld, D. S. (1995). Intelligent agents on the internet: Fact, fiction,
and forecast. IEEE Expert: Intelligent Systems and Their Applications, 10(4),
44–49.

Fidas, C., Katsanos, C., Papachristos, E., Tselios, N., & Avouris, N. (2007). Remote
usability evaluation methods and tools: A survey. Paper presented at Pan-
Hellenic Conference on Informatics.

Fuchs, C. (2007). Towards a dynamic theory of virtual communities. International
Journal of Knowledge and Learning, 3(4/5), 372–403.

Gamma, E. & Eggenschwiler, T. (1998). JHotDraw as open-source project. Available
from http://www.jhotdraw.org Accessed 12.05.08.

Greenberg, S., & Roseman, M. (2003). Using a room metaphor to ease transitions in
groupware. In M. Ackerman, V. Pipek, & V. Wulf (Eds.), Sharing expertise: Beyond
knowledge management (pp. 203–256). Cambridge: MIT Press.

Gutwin, C. (1997). Workspace awareness in real-time distributed groupware. Ph.D.
Thesis, Dept. of Computer Science, University of Calgary, Canada.

Gutwin, C. & Greenberg, S. (2000). The mechanics of collaboration: Developing low
cost usability evaluation methods for shared workspaces. In Paper presented at
IEEE 9th international workshop on enabling technologies: Infrastructure for
collaborative enterprises (WET-ICE’00), Gaithersburg, Maryland.

Gutwin, C., & Greenberg, S. (2004). The importance of awareness for team cognition
in distributed collaboration. In E. Salas & S. M. Fiore (Eds.), Team cognition:
Understanding the factors that drive process and performance (pp. 177–201).
Washington: APA Press.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3), 231–274.

Herman, I., Delest, M., & Melançon, G. (1998). Tree visualization and navigation
clues for information visualization. Computer Graphics Forum, 17(2), 153–165.

Herman, I., Melançon, G., & Marshall, M. S. (2000). Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1), 24–43.

Hilbert, D. M., & Redmiles, D. F. (2000). Extracting usability information from user
interface events. ACM Computer Surveys, 32(4), 384–421.

Hopcroft, J., & Tarjan, R. E. (1974). Efficient planarity testing. Journal of the ACM,
21(4), 549–568.

Ivory, M. Y., & Hearst, M. A. (2001). The state of art in automating usability
evaluation of user interfaces. ACM Computer Surveys, 33(4), 470–516.

Johansen, R., Sibbet, D., Benson, S., Martin, A., Mittman, R., & Saffo, P. (1991). Leading
business teams: How teams can use technology and group process tools to enhance
performance. Boston: Addison-Wesley.

Kargar, D. & Schraefel, M. C. (2006). The pathetic fallacy of RDF. Paper presented at
semantic web user interaction workshop (SWUI 2006) at the interantional semantic
web conference ISWC 2006, Athens, Georgia.

Margaritis, M., Fidas, C. & Avouris, N. (2007). A framework to facilitate building of
collaborative learning applications [Special issue]. Advanced Technology for
Collaborative Learning (ATL) International Journal, 4(1).

Misue, K., Eades, P., Lai, W., & Sugiyama, K. (1995). Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6, 183–210.

Mutzel, P., Gutwengwer, C., Brockenauer, R., Fialko, S., Klau, G., Kruger, M., Ziegler,
T., Naher, S., Alberts, D., Ambras, D., Koch, G., Junger, M., Bucheim, C., & Leipert,
S. (1997). A library of algorithms for graph drawing. In Symposium on Graph
Drawing GD ’97, Springer-Verlag, pp. 456–457.

Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R. L. Mack (Eds.), Usability
inspection methods. New York: John Wiley & Sons.

Purchase, H. C. (1998). Which aesthetic has the greatest effect on human
understanding. In Symposium on Graph Drawing GD ’97, Springer-Verlag, pp.
248–261.

Purchase, H. C., Cohen, R. F., & James, M. (1995). Validating graph drawing
aesthetics. In Symposium on Graph Drawing GD ’95, Springer-Verlag, pp. 435–
446.

Reenskaug, T. (2003). The model-view-controller (MVC): It’s past and present. Paper
presented at the metting of JavaZONE, Oslo.

Sigala, M. (2007). Integrating web 2.0 in e-learning environments: A socio-technical
approach. International Journal of Knowledge and Learning, 3(6), 628–648.

Stefik, M., Bobrow, D., Foster, G., Lanning, S., & Tatar, D. (1987). WYSIWIS Revised:
Early experiences with Multiuser interfaces. ACM Transactions on Office
Information Systems, 5(2), 147–167.

Sugiyama, K., Tagawa, S., & Toda, M. (1989). Methods for visual understanding of
hierarchical systems structures. IEEE Transactions on Systems, Man and
Cybernetics, SMC, 11(2), 109–125.

Sun Microsystems (2002). Core J2EE patterns. Available from Sun Developer
Network Java Blueprints: http://java.sun.com/blueprints/corej2eepatterns
Accessed 10.05.08.

http://Sourceforge.net
http://graphml.graphdrawing.org
http://graphml.graphdrawing.org
http://www.json.org/fatfree.html
http://www.json.org/fatfree.html
http://download.dojotoolkit.org/release-0.9.0/
http://www.jhotdraw.org
http://java.sun.com/blueprints/corej2eepatterns


J.B. Tolosa et al. / Computers in Human Behavior 26 (2010) 210–217 217
Tarta, A. M., & Moldovan, G. S. (2006). Automatic usability using AOP. IEEE
International Conference on Automation, Quality and Testing, Robotics, 2, 84–89.

Tutte, W. (1963). How to draw a graph. Proceedings of the London Mathematical
Society, 3(13), 743–768.

Ware, C. (2000). Information visualization: Perception for design. San Francisco:
Morgan Kaufmann.
Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2), 115–152.

yWorks, The Diagramming Company (2004). yFiles: Diagramming that works.
Available from http://www.yworks.com/products/yfiles/doc/yFiles_E.pdf
Accessed 08.05.08.

http://www.yworks.com/products/yfiles/doc/yFiles_E.pdf

	Interactive web environment for collaborative and extensible diagram based learning
	Introduction
	Groupware usability issues
	Graph visualization background
	Overview of graph layout algorithms
	Spanning and clustering

	Graph structured semantic information interaction

	A prototype for collaborative and extensible diagram design
	System architecture
	Server side
	Client side
	Client–server communication
	User interaction and layout algorithms


	Conclusion and future work
	References


