
Ontologies in Checking for Inconsistency
of Requirements Specification

Kroha, P., Janetzko, R.
TU Chemnitz, Faculty of Computer Science,

Chemnitz, Germany
Email: kroha@informatik.tu-chemnitz.de, robertjanetzko@web.de

Labra, J.E.
E.U. de Ingenieria Tec. Informatica de Oviedo,

Universidad de Oviedo, Oviedo, Spain
Email: jelabra@gmail.com

Abstract

In this paper, we investigate how the methods developed
for using in Semantic Web technology could be used in
validating requirements specifications.

The goal of our investigation is to do some (at least
partial) checking and validation of the UML model using a
predefined domain-specific ontology in OWL, and to process
some checking by using the assertions in descriptive logic.

We argue that the feedback caused by the UML model
checked by ontologies and OWL DL reasoning has an im-
portant impact on the quality of the outgoing requirements.

This paper describes not only methods but also the
implementation of our tool TESSI (in Protéǵe, Pellet, Jess)
and practical experiments in consistency checking of re-
quirements.

1. Introduction

Requirements specification is a complex and time-
consuming process. The goal is to describe exactly what
the user wants and needs. Any failure and mistake in re-
quirements specification is very expensive because it causes
the development of software parts that are not compatible
with the real needs of the user and must be reworked later
for additional costs.

When the analysis phase of a project starts, analysts have
to discuss the problem to be solved with the customer
(users, domain experts) and then write the requirements
found in form of a textual description. This is a form the
customer can understand. However, any textual description
of requirements can be (and usually is) incorrect, incomplete,
ambiguous, and inconsistent. Later on, the analyst specifies
a UML model based on the requirements description he has
written himself before. However, users and domain experts
cannot validate the UML model as most of them do not
understand (semi-)formal languages such as UML. Misun-
derstanding between analysts and users is very common and
brings projects over budget.

Requirements are based on knowledge of domain experts
and users’ needs and wishes. One possible way to classify

this knowledge and then fashion it into a tool is through
ontology engineering. Simplified, ontologies are structured
vocabularies(basic concepts in the domain and relations
among them) having additionally the possibility of reason-
ing.

This approach will be discussed in this paper. For our
requirements specification tool TESSI, we have designed
and implemented an ontology-based component that helps
to reduce misunderstanding, missed information, and helps
to overcome some of the barriers that make successful
specification of requirements so difficult. In this paper we
focus on checking consistency of requirements.

The rest of the paper is organized as follows. In Section
2 we discuss related work. In Section 3 we briefly explain
why ontology is the proper mechanism to be used in require-
ments specification. Section 4 describes the architecture and
functionality of our implemented requirements specification
tool TESSI. In Section 5 the implementation is given. In
Section 6 we present the results of experiments, Section 7
contains conclusions.

2. Related work

Using ontologies to shape the requirements engineering
process is clearly not a new idea. In the area of knowledge
engineering, ontology was first defined by [25].

An ontology-based approach to knowledge acquisition
from text through the use of natural language recognition
is discussed in [2], [17], in [19] and the last approach in
[4]. In [30] they have constructed the Enterprise Ontology
to aid developers in taking an enterprise-wide view of an
organisation. The approach in [17] is intended to automate
both interactions with users and the development of appli-
cation models.

The ontologies used by [28] in their Oz system are
domain models which prescribe detailed hierarchies of
domain objects and relationships between them. Formal
models for ontology in requirements are described in [16].
Domain rules checking is described in [24]. In [32] the
inconsistency measurement is discussed. The ontology used
by the QARCC system [1] is a decomposition taxonomy of



software system quality attributes. In [24] a formal model
of requirements elecitation is discused that contains domain
ontology checking.

Concerning inconsistencies the overview is given in [5], in
[26], and lately in [29] but there is not an approach applying
ontology in the sense of our way.

However, our work is not specifically addressing the
issue of improving natural language communication between
stakeholders in an interview in order to achieve more pol-
ished requirements as most of the related papers are. We
investigate the possibility of combining UML model and
OWL ontology for checking and validating requirements
specifications, as we have already mentioned above.

3. Why to Use Ontology for Checking Require-
ments Specifications

Ontologies seem to be the right tool because they are
designed to capture natural language descriptions of domains
of interest. An ontology consists of:

• Description part - a set of concepts (e.g. entities,
attributes, processes), their definitions and their inter-
relationships. This is referred to as a conceptualiza-
tion. Here, ontology represents the domain knowledge
(domain ontology) and requirements can be seen as a
specialized subset of it (as problem ontology in our
text).

• Reasoning part - a logical theory that constrains the
intended models of logical language containing:

– integrity rules of the domain model representing
the domain knowledge,

– derivation rules and constraint rules of the problem
model.

Reasoning in ontologies brings the inferential capa-
bilities that are not present in taxonomies used for
modeling formerly. It makes possible to search for
contradictions that indicate inconsistencies.

4. The tool TESSI - Architecture and Dataflow

We argue that there is a gap between the requirements
definition in a natural language and the requirements spec-
ification in some semi-formal graphical representation. The
analyst’s and the user’s understanding of the problem are
usually more or less different when the project starts. The
first possible point of time when the user can validate the
analyst’s understanding of the problem is when a prototype
starts to be used and tested.

In our approach [20], [21], [23] that will be developed
further in this report, we offer a textual refinement of the
requirements definition which can be called requirements
description. Working with it, the analyst is forced by our
supporting tool to complete and explain requirements and to

Figure 1. Architecture and dataflow of our tool TESSI

specify the roles of words in the text in the sense of object-
oriented analysis. During this process, a UML model will be
built with our tool driven by the analyst’s decisions. Based
on this UML model a new, model-derived requirements
textual description will automatically be generated [23] that
describes the analyst’s understanding of the problem. Now,
the user has a good chance to read it, understand it and
validate it. His/her clarifying comments will be used by the
analyst for a new version of the requirements description.
The process repeats until there is a consensus between
the analyst and the user. This does not mean that the
requirements description is perfect, but some mistakes and
misunderstandings are removed.

We argue that the textual requirements description and its
preprocessing by our tool will positively impact the quality
and the costs of the developed software systems because it
inserts additional feedbacks into the development process.
In this paper, we present how the UML model is used
for checking consistency. There are some other checking
possibilities but their presentation is out of the scope of this
paper.

Using experiences given in [24], we describe the do-
main ontology in Prot́eǵe and apply ontology reasoning
(e.g. the inference engine in Pellet - for checking classes)
first for domain ontology checking, then for requirements
problem ontology checking, and last for checking whether
the requirements problem ontology subsumes the domain
ontology.

The steps of the requirements processing that uses ontolo-
gies are the following:

• building a domain ontology in OWL using Protéǵe, i.e.



domain ontology description based on OWL and SWRL
based is constructed by domain experts at first and then
transformed into the concepts set of Pellet and roles set
of Jess.

• checking the domain ontology for consistency using
Pellet (class hierarchy) and Jess (rules),

• the analyst writes a text description of requirements
based on interviews with users,

• the analyst builds the UML model from a textual de-
scription of requirements supported by our tool TESSI,

• conversion of requirements described as a UML model
to a problem ontology in OWL using convertor ATL
(we used ATL because RacerPro is not public),

• checking the problem ontology for its consistency,
• checking the problem ontology for consistency with the

domain ontology,
• identifying inconsistency problems,
• finding the corresponding parts in the former textual

description of requirements and correcting them,
• building a new UML model based on corrected textual

description of requirements,
• after iterations when no ontology conflicts have been

found a new textual description of requirements will
be automatically generated that corresponds to the last
iteration of the UML model,

• before the UML model will be used for design and
implementation the user and the analyst will read the
generated textual description of requirements and look
for missing features or misunderstandings,

• problems found can start the next iteration from the
very beginning,

• after no problems have been found the UML model in
form of a XMI-file will be sent to Rational Modeler
for further processing.

5. Implementation

As we already mentioned above we needed to implement:

• converting UML model into problem ontology model,
• checking ontology class hierarchy,
• checking consistency of ontology rules.

The component of TESSI containing the ontology-based
consistency checking of requirements specification has been
implemented in [14].

5.1. Using ATL for Converting UML to OWL

Our goal was to convert the UML model obtained from
the textual requirements into a corresponding problem ontol-
ogy model that can be compared with the domain ontology
model. The comparison results in consideration whether
some new knowledge concerning the correctness, consis-
tency, completness, and unambiguity could be made.

Figure 2. The component for consistency checking

There are some tools available. The UMLtoOWL tool by
Gasevic [8] converts UML model description in extended
Ontology UML Profile (OUP) using the XML Metadata
Interchange (XMI) format to The Web Ontology Language
(OWL) ontologies. The tool is implemented using eXtensible
Stylesheet Language Transformation (XSLT).

We have used the Eclipse Framework and the ATL [18]
Use Case UML2OWL by Hillairet [11]. He implemented
a transformation according to the ODM specification. It
consists of two separate ATL transformations. The first
transformation UML2OWL takes an UML model as input
and produces an ontology as OWL metamodel. The second
transformation is an XML extractor that generates an XML
document according to the OWL/XML specification by the
W3C. We have extended Hillairets scripts to fit the UML
models of TESSI and added support for SWRL contraints.
These constraints are converted to SWRL/XML syntax to
fit inside the OWL. This is done by an ANTRL parser and
compiler that can convert SWRL rules in informal syntax
entered in TESSI into the correct OWL/SWRL syntax.
The use of SWRL rules provides us further posibilities for
checking our model.

5.2. Using Pellet for Checking Ontology

Pellet is a tool that allows ontology debugging in the
sense that it indicates the relation between unsatisfiable
concepts or axioms that cause an inconsistency. We use it to
check whether the requirements problem ontology subsumes
the domain ontology. Because our problem ontology is
generated from the UML model by the convertor ATL,



there are no problems to be expected in the structure of the
problem ontology because the UML model has been built
under respecting rules for well-formed UML model.

The OWL files generated in the previous step can be
loaded into Prot́eǵe. From there they can be transferred to a
reasoner using the DIG description logic reasoner interface.
The DIG interface is an emerging standard for providing
access to description-logic reasoning via an HTTP-based
interface to a separate reasoning process. Current releases
of Prot́eǵe already include the Pellet reasoner, since it is
robust and scalable, and is available under an open-source
license.

5.3. Using Jess for Reasoning in Ontology

To find inconsistencies in ontology rules we need an
inference machine. We used the Jess rule engine [6]. Jess
was inspired by the CLIPS expert shell system and adds
additional access to all the powerful Java APIs for network-
ing, graphics, database access, and so on. Jess can be used
free of charge for educational purposes. Because Protéǵe and
Jess are implemented in Java, we can run them together in a
single Java virtual machine. This approach lets us use Jess
as an interactive tool for manipulating Protéǵe ontologies
and knowledge bases.

Prot́eǵe offers two ways to communicate with Jess. The
first one is the plugin JessTab, which provides access to the
Jess console and supports manual mapping of OWL facts
into Jess and back. We used the second plugin SWRLTab.
It is a development environment for SWRL rules in Protéǵe
and supports automatical conversion of rules, classes, prop-
erties and individuals to Jess. From there you can control
the Jess console and look up the outputs. This is done by a
plugin for SWRLTab called SWRLJessTab, which contains
a SWRL to Jess bridge and a Jess to Java bridge. This
allows the user to add additonal functions to their SWRL
rules by defining the corresponding functions as Java code
and use them inside Protéǵe. SWRLTab lets you also insert
the inferred axioms back into your ontology. This way it is
possible to use complex rules to infer new knowledge.

5.4. Interaction of the used tools

All these described tools are put together during the re-
quirement analysis. Figure 3 shows how this is done. Starting
with the textual description and an ontology describing the
domain the analyst can use TESSI to create a model of
the planned system. This model can also contain constraints
which will be compiled into SWRL rules by an ANTLR
parser. The rest of the model will be transformed into an
UML model [31], which will later be converted into an
ontology. The ontology is merged with the SWRL rules and
can then be opened in Protéǵe. From there the analyst can
check the model consistency with Pellet and validate the

Figure 3. Interaction of the used tools

rules with SWRLTab and Jess. The knowledge gained will
then be used to make corrections to the TESSI model.

6. Experiments

For experiments, we used a requirements specification of a
library [23]. The text describes functional requirements for a
library management system. It contains aspects of media and
user management, describing several special use cases and
state machines for selected classes. The text was developed
to show the posibilities TESSI provides for requirement
analysis.

6.1. Checking with rules

As an example of checking rules we have the following
case. There is a relation “borrow” between Librarian and
User. But if we model Librarian as a subset of class User,
because a librarian may also borrow books, the Librarian (as
an instance) could borrow a book himself. This is not what
we want. Usually, we do not allow that a clerk in a bank



can give a loan to himself, we do not want that a manager
decides about his salary etc. The solution is that we do not
allow some relations to be reflexive in the domain ontology,
e.g. the relation “borrow”. Any problem ontology that does
not contain the condition that a librarian must not borrow
a book to himself will be found to be inconsistent to the
domain ontology.

This example can be checked in TESSI by modelling the
two classes User and Librarian. We decide that a Librarian
is a specialization of an User with additional possibilities to
manage the library. Then we define an association between
these two and name the direction from Librarian to User
borrowsTo. After that we can use SWRL-Rules to describe
the desired behavior. The first rule we need will set the
relation between every possible Librarian and User pair:

Librarian(?x) ∧ User(?y) → borrowsTo(?x, ?y)

The second rule will be used to check if any of the librarians
is able to borrow a book to himself:

borrowsTo(?x, ?y) ∧ sameAs(?x, ?y) → error(?x, ”self”)

Now we can create an UML model based on our example
and then generate an ontologie with this content. The ontol-
ogy will then be loaded into Protéǵe.

The Prot́eǵe plugin SWRLTab offers several ways to work
with SWRL rules. It also allows us to communicate with
the Jess rule engine. Using this plugin we can transform the
knowledge of the ontology in facts for Jess. Running Jess
will then cause new facts to be inferred.

In our case it will set up the borrowsTo relationship for all
Users and Librarians and then test for Librarians that borrow
to theirselves. The Inferred Axioms window in Protéǵe will
then list all possible errors and we can use this information
to make correnctions to the model in TESSI. In this case we
can remove the subclass from User and after a further test
Jess will get no errors.

6.2. Checking with restrictions

The next example will show the posibility to check
restrictions. In our library a user can borrow books or reserve
them if they are not available. In order to limit users to a
fixed amount of reservations the reserve relation should be
restricted.

In TESSI these conditions can be modeled with associa-
tions. Therefor we use the artifact dialog for associationsto
create a new Instance at the corresponding position in the
requirements text. We set User and MediumInstance as as-
sociation ends. The direction from User to MediumInstance
will be labeled with reservedMedia an gets the cardinality
0 to n, in this examplen is set to 3. Both classes User
and MediumInstance must have set some equivalents in the
domain ontology to access the corresponding individuals

later. To provide some test data we need to add a constraint
that fills the reservedMedia relation:

User(?x) ∧ MediaInstance(?y) → reservedMedia(?x, ?y)

After converting the model to UML and to an ontology we
use the SWRLTab to infer the new axioms and then use
the Jess to OWL button to include the new knowledge into
our ontology. Afterwards we can check the results on the
individuals tab in Prot́eǵe. It will show red borders around
properties which do not meet the defined restrictions.

Based on these observations either the restrictions must
be corrected or the test data is wrong and the constraint for
filling it must be adopted.

7. Conclusion

One of the problems that may occur is that the restriction
rules of requirements (called constraints) are described in
OCL (Object Constraint Language) which is stronger than
SWRL. As we will describe below, description logics have
different expresiveness. The reason is that the computational
complexity of the reasoning, i.e. of the decision whether the
system is correct and consistent, may explode and we never
obtain the result guarenteed if the expressivenes of the used
description logic is too high.

Another problem is the necessarily use of individuals to
process SWRL rules. This requires to add several individuals
of every class to the domain ontology whithout knowing
what rules will later be modeled in TESSI. It also requires
to have some meaningful properties set to these objects.
Otherwise it will not be possible to validate the model with
SWRL rules.

SWRL also offers only limited possibilities to express
rules. The formulas are based on first oder logic but can
only contain conjunctions of atomic formulas. There is no
support for quantiviers or more complex terms. SWRL also
can’t express negations, which requires the user to create
formulas on a special way and limits the expressiveness of
SWRL rules.

Ontology research has primarily focused on the act of
engineering ontologies or it has been explored for use in
domains other than requirements elicitation, specification,
checking, and validation. Using ontologies supports consis-
tency which is critical to the requirements engineering pro-
cess. Consistent understanding of the domain of discourse
reduces ambiguity and lessens the impact of contextual
differences between participants.

In this paper we focused on consistency but there are also
further properties that can be checked using ontologies. This
is a motivation for our further research.

References

[1] Boehm B., In H.: Identifying Quality Requirements Conflicts.
IEEE Software, pp. 25-35, March 1996, 1996.



[2] Carreno, R.S., et al.: An ontology-based approach to knowl-
edge acquisition from text. Cuadernos de Filologia Inglesa,
9(1), pp. 191-212 (in English), 2000.

[3] CHAOS Report. The Standish Group, 1995.

[4] Christopherson, L.L.: Use of an ontology-based note-taking
tool to improve communication between analysts and their
clients. A Masters Paper for the M.S. in I.S.degree, University
of North Carolina, November, 2005.

[5] Easterbrook, S., Callahan, J., and Wiels, V.: V & V Through
Inconsistency Tracking and Analysis. Proceedings of Interna-
tional Workshop on Software Specification and Design, Kyoto,
1998.

[6] Eriksson, H.: Using JessTab to integrate Protege and Jess.
Intelligent Systems, Volume 18, Issue 2, pp. 43- 50, IEEE Mar-
Apr 2003.

[7] Falkovych, K.: Ontology Extraction from UML Diagrams.
Master’s thesis, Vrije Universiteit Amsterdam, 2002.

[8] http://www.sfu.ca/ dgasevic/projects/UMLtoOWL

[9] Gasevic, D., Djurevic, D., Devedzic, V.: Model Driven Archi-
tecture and Ontology Development. Springer, 2006.

[10] Guarino, N.: Understanding, building, and using ontologies.
International Journal of Human-Computer Studies, 46(2/3), pp.
293-310, 1997.

[11] Guillaume Hillairet: ATL Use Case - ODM
Implementation (Bridging UML and OWL)
http://www.eclipse.org/m2m/atl/usecases/ODMImplementation.

[12] Horridge, M., et al.: A Practical Guide to Building OWL
Ontologies Using the Protg-OWL Plugin and CO-ODE Tools,
Edition 1.0. http://protege.stanford.edu/doc/users.html.

[13] Hunter, A., Nuseibeh, B.: Managing Inconsistent Specifica-
tions: Reasoning, Analysis and Action. ACM Transactions on
Software Engineering and Methodology, Vol. 7, No. 4, pp. 335-
367, 1998.

[14] Janetzko, R.: Applying ontology for checking of requirements
specification. M.Sc. Thesis, Faculty of COmputer Science, TU
Chemnitz, 2009. (In German)

[15] Jess 7.1 manual.
Sandia National Laboratories.
http://www.jessrules.com/jess/docs/index.shtml,2007.{OMG}
http://www.omg.org/techprocess/meetings/schedule/
UML 2.0 SuperstructureFTF.html

[16] Jiang, D., Zhang, S., Wang, Y.: Towards a formalized
ontology-based requirements model. Journal of Shanghai Jiao-
tong University (Science), 10(1), pp. 34-39, 2005.

[17] Jin, Z.: Ontology-Based Requirements Elicitation. Journal of
Computers, 23(5), pp. 486-492, 2003.

[18] Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model
transformation tool. Science of Computer Programming, Vol.
72, No. 1-2. pp. 31-39, June 2008.

[19] Kaiya, H., Saeki, M.: Using Domain Ontology as Domain
Knowledge for Requirements Elicitation. In: Proceedings of
14th IEEE International Requirements Engineering Confer-
ence, Minnesota, pp. 186-195, 2006.

[20] Kroha, P., Strauss, M.: Requirements Specification Iteratively
Combined with Reverse Engineering. In: Plasil,F., Jeffery,K.
(Eds.), SOFSEM’97: Theory and Practice of Informatics.
Milovy, November 1997, Lecture Notes in Computer Science,
No. 1338, Springer, 1997.

[21] Kroha, P.: Preprocessing of Requirements Specification. In:
Ibrahim, M., King, J., Revell, N. (Eds.): Proceedings of the
11th International Conference Database and Expert Systems
Applications DEXA 2000, London, Lecture Notes in Computer
Science, No. 1873, Springer, 2000.

[22] Kroha, P., Labra, J.: Using Semantic Web Technology in
Requirements Specifications. Research Report Chemnitzer In-
formatik Berichte CSR-08-02, ISSN 0947-5125, TU Chemnitz,
2008.

[23] Kroha, P., Rink, M.: Text Generation for Requirements Va-
lidation. In: Filipe, J. and Cordeiro, J. (Eds.): Proceedings of
ICEIS’2009, Milano, Lecture Notes in Business Information
Systems 24, pp. 467-478, Springer, 2009.

[24] Li, Z., Wang, Z., Zhang, A., Xu, Y.: The Domain Ontology
and Domain Rules Based Requirements Model Checking.
International Journal of Software Engineering and Its Applica-
tions, Vol. 1, No. 1, July, 2007.

[25] Neches, R., Fikes, R.E., Finin, T.: Enabling technology for
knowledge sharing. AI Magazine, 12 (3), pp. 36-56, 1991.

[26] Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging In-
consistency in Software Development. IEEE Computer, April
2000.

[27] http://protege.stanford.edu/overview/index.html

[28] Robinson, W., Fickas, S.: Supporting Multiple Perspective
Requirements Engineering. In: Proceedings of the 1st Inter-
national Conference on Requirements Engineering (ICRE 94),
IEEE Computer Society Press, pp.206-215, 1994.

[29] Spanoudakis, G., Zisman, A.: Inconsistency Management in
Software Engineering: Survey and Open Research Issues. In:
Chang, S.K. (ed.): Handbook of Software Engineering and
Knowledge Engineering, World Scientific Publishing Co., pp.
329-380, 2001.

[30] Uschold, M., King, M., Moralee, S., Zorgios, Y.: The En-
terprise Ontology. Knowledge Engineering Review, 13(1), pp.
31-89, 1998.

[31] Weidauer, J.: Implementation of a Component for Transfor-
mation of an OWL Models into UML 2. M.Cs. Thesis, Faculty
of Computer Science, TU Chemnitz, 2008. (In German)

[32] Zhu, X., Zhi, Jin: Inconsistency Measurement of Software
Requirements Specifications an Ontology-Based Approach. In:
Proceedings of the 10th IEEE International Conference on
engineering of Complex Computer Systems, 2005.


