Searching over Public Administration Legal Documents using Ontologies

Diego Berrueta

Jose E. Labra

Luis Polo

CTIC Foundation, R & D Department University of Oviedo, Spain

Motivation General Aim

- Features of public administration documents
 - Lots of documents are published everyday
 - Concrete domains: Law, administration, etc.
- Poor effectiveness of syntactic approaches
- Our approach:
 - We applied Semantic web tools and ontologies in this domain
 - A search tool with ontology based query expansion
- General aim:
 - Bridge the gap between public administration and citizens

Motivation BOPA (1)

- BOPA (Boletín Oficial del Principado de Asturias)
 - Official Journal of the Principality of Asturias, Spain
 - Asturias:
 - Northern region of Spain
 - Approx. 1,1 million people

Motivation BOPA (2)

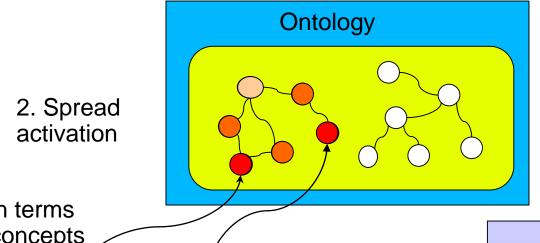
- The BOPA contains every announcement related with Asturias public administration
 - Laws, resolutions, public auctions, etc.
 - General interest to every citizen
 - Specialized jargon
- The previous system:
 - PDF and plain HTML
 - Simple syntactic Search tool
 - Chronological and by title
- Some statistics:
 - 14.314 articles in 23.100 pages (2005)

Motivation Some restrictions

- We could not interfere with the established process
 - We were allowed to work only with the generated data
- Adding tags to each document manually = not practical
 - Not enough personal and lots of documents
 - Error prone

Ontology based search Ontologies

- We defined ontologies for our problem domain
 - A team of 3 domain experts was employed
- Ontologies were developed in a modular way
 - One upper legal & administrative Ontology
 - Several domain ontologies
 - We defined micro-ontologies for several contexts
 - Micro-ontologies import the upper ontology
 - Examples: public-employment, subventions, etc.


Ontology based search Synsets

- Each concept has a synonym set (synset) associated
 - In practice, we use 2 types of synsets:
 - Input synset: Terms used in common language
 - Allow to find a concept from a query term
 - Output synset: Legal and administrative terms
 - Allow to find a document that contains a concept
 - Example:
 - Concept: Holiday
 - Input synsets: "holiday", "vacation", "break"
 - Output synsets: "holiday" "vacation"

Ontology Based Search Search Process overview

3. Obtain list of words and weights

1. Match terms	3. Obtain lis
with concepts	Word janitor
Terms: holiday janitor	holiday vacation staff
Query: "holidays of janitors" 4. Apply enriched query	collective a
BOPA	legal contra

Word \	Neight
janitor	1.0
holiday	1.0
vacation	1.0
staff	0.5
collective agreeme	nt 0.5
work day	0.5
legal contract	0.75

Motivation

Ontology based search

Results

Other services

System development Conclusions

Ontology Based Search Step 1. Match terms to concepts

- Query sentence is parsed to obtain terms
 - Remove non-content words like "the", "but", etc.
 - Remove suffixes of words
- Terms are matched against input synsets of ontology concepts
- A context (micro-ontology) is determined for the query
 - If several concepts belong to different contexts, we take the common one
 - In case of several choices, the user can select one
- Search can be restricted to that context

Ontology Based Search Step 2. Spreading activation

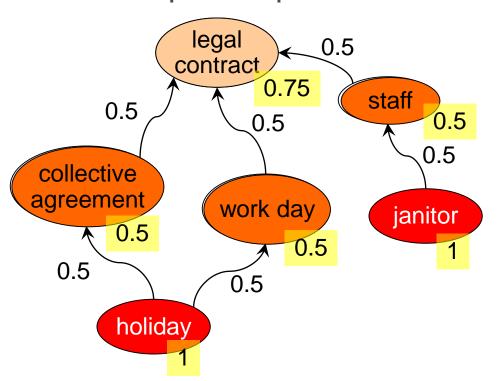
- We use the spreading activation algorithm
 - It returns a weighted list of related concepts

```
= weight of relation between nodes i and j
          = set of activation nodes
                    Initialized to initial query concepts
                    Implemented as a queue ordered by activation value
          = set of output concepts
     N_{min} = Minimum activation level
while \Delta \neq \emptyset and N_k > N_{min}
          extract a node n_k from \Delta
          add n_k to \Theta
          For each node n_i such that w_{ki} > 0
                    N_i = N_i + w_{ki} N_k
                    Add n_i to \Delta
endWhile
return (9)
```

Spreading activation algorithm (simplified)

Motivation

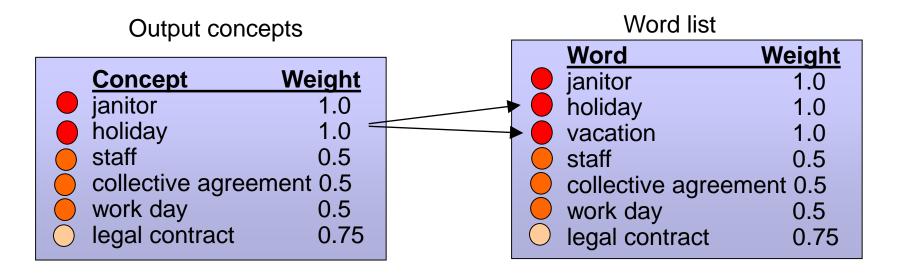
Ontology based search


Other services System development Conclusions

Ontology Based Search Step 2. Spreading Activation

Example of Spread activation

Output concepts


Concept V	Veight
janitor	1.0
holiday	1.0
staff	0.5
collective agreemen	nt 0.5
work day	0.5
legal contract	0.75

Ontology Based Search Step 3. Obtain words from concepts

- For each concept, we obtain the representative words
 - The words are obtained from the output synsets

Ontology Based Search Step 4. Apply syntactic search

- Syntactic Search
 - We used Apache Lucene search engine
 - Search expression:

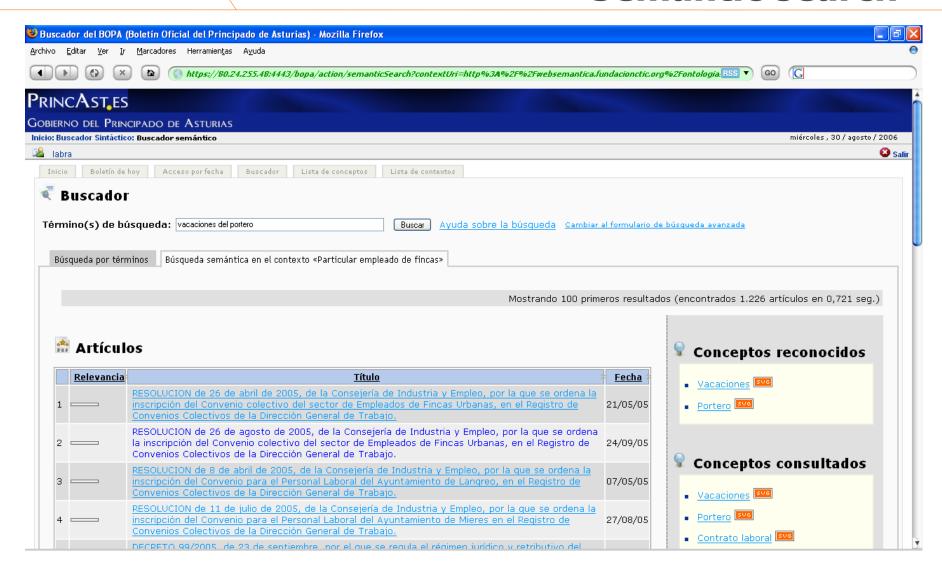
```
"janitor"^1 "holiday"^1 "vacation"^1 "staff"^.5 ("collective agreement"~1)^.5 ("work day"~1)^.5 ("legal contract"~1)^.75
```

Search results are ordered according to relevance level

Other Services Syntactic search

Motivation

Ontology based search


Other services

System development Conclusions

Other Services Semantic search

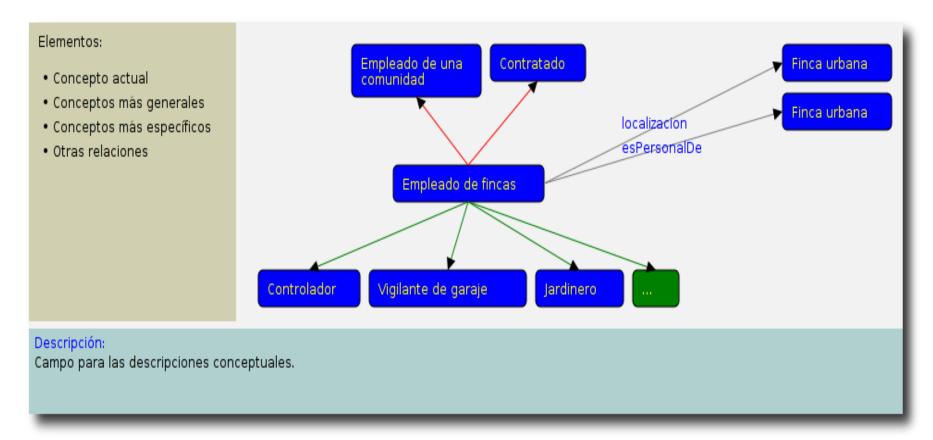
Motivation Ontology based search

Other services

System development Conclusions

Other Services Alert subscription service

- Query subscription
 - Users can subscribe to a query
 - A notification can be send when new results for that query appear
 - Email and SMS alerts can be send to registered users


CTIC Foundation

Other Services Concept Browser

- User interface developed in SVG
- Navigational representation of the Ontology concepts

Other Services Simple Explanation module

Motivation

Ontology based search

Other services

System development Conclusions

System Development Architecture and Methodology

J2EE application

- Data access tier
 - XML Native Database: XIndice
 - Relational database
 - Syntactical indexes managed by Lucene
 - Original web server where BOPA is still published
- Business tier
 - Several vertical subsystems (low coupling)
 - Search engines, syntactical analysis, ontology processing, etc.
 - Functionality exported through web services
- Main User interface developed with the Struts framework
- Development methodology
 - We used some agile development techniques
 - Pair programming

System Development Recovering information from HTML

- A web crawler fetches HTML pages
 - The pages are not valid HTML
- JTidy transforms bad formed HTML to well formed XHTML
- A chain of XSLT transformations allows to extract information in XML format
 - We use a custom XML vocabulary
- Static HTML data is completed with database data

System Development Application integration

- Interoperability has been a design goal
- All the functionality can be accessed by web services
- 5 clients have been implemented
 - Standard Web application front end
 - VoiceXML interface
 - Desktop .Net client
 - Desktop Python client
 - Java client using SWT libraries for Eclipse
- We export a RSS channel which is updated daily with the contents of new bulletins
- Bulletin contents are exported in HTML, PDF and RDF

Evaluation of search results

- At this moment, we are logging user activity and we collect different statistics
 - How many times the first result is selected, etc....
- Developed framework for testing quality of results
 - Difficulties to define good search results
 - We apply it mainly for regression tests
- We are planning to do medium scale tests with real users in short term

Conclusions and Future work

- Practical application using a knowledge based approach
 - The prototype has been adopted by the Public Administration department
 - It will be part of a production environment
- Future work
 - Extend the search to the whole public administration site
 - Practical evaluation of the approach
 - Usability, search results, etc.
 - Extend Context-Theory
 - Allow more flexibility in context definition
 - Relationship between contexts and spread-activated nodes
 - Allow users feedback (tags)
 - Ontology development and reusability
 - Incorporate other ontologies (DOLCE, SUMO, etc.)
 - Develop a general legal and administrative ontology
 - Digitization project of past documents
 - BOPA started to be published before 1900

The end