
A Formal Method for Program Slicing*

Yingzhou Zhang1,2, Baowen Xu1,2, Jose Emilio Labra Gayo3
(1Dep. of Computer Science and Engineering, Southeast Univ., Nanjing 210096, China)

(2Jiangsu Institute of Software Quality, Nanjing 210096, China)
(3Dep.of Computer Science, Univ. of Oviedo, C/Calvo Sotelo s/n C.P. 33007, Oviedo, Spain)

mathzyz@163.com, bwxu@seu.edu.cn, labra@lsi.uniovi.es

Abstract

Program slicing is a well-known program analysis

technique that extracts the elements of a program related to
a particular computation. Based on modular monadic
semantics of a programming language, this paper
presents a new formal method for slicing, called modular
monadic slicing, by abstracting the computation of
slicing as a slice monad transformer. With the use of slice
transformer, the feature of program slicing can be
combined in a modular way into semantic descriptions of
the program analyzed. According to these, this paper
gives both monadic dynamic and static slicing algorithms.
They compute program slices directly on abstract syntax,
without the needs to explicitly construct intermediate
structures such as dependence graphs, or to record an
execution history in dynamic slicing algorithm.

1. Introduction

Program slicing is a well-known program analysis
technique that extracts the elements of a program related
to a particular computation. A program slice consists of
those statements of a program that may directly or
indirectly affect the variables computed at a given
program point, referred to as a slicing criterion. Program
slicing has applications in program comprehension,
testing and debugging, re-engineering, and software
maintenance [1-4].

In reverse engineering, program slicing provides a
toolset for abstracting out of the source codes the
design decisions and rationale from the initial
development and understanding the algorithms chosen.

 * This work was supported in part by the National Natural Science
Foundation of China (60373066, 90412003), Young Scientist's
Foundation of NSFC (60303024), National Research Foundation for
the Doctoral Program of Higher Education of China (20020286004).

In software maintenance, program slicing can help
maintainers to determine whether a change at some
place in a program will affect the behavior of other
parts of the program. Program slicing can be used in
software quality assurance to locate all code that
contributes to the value of variables that might be part
of a safety critical component.

The original program slicing method was expressed
as a sequence of data flow analysis problems [5]. An
alternative approach relied on program dependence
graphs (PDG) [6]. Most of the existing slicing methods
were evolved from these two approaches. As the
behavior of a program is determined by the semantics of
the language, it is reasonable to expect an approach for
program slicing based on formal semantics of a program.

The program slicing methods focused on the
semantics of programs are mainly based on the
standard denotational semantics, i.e. denotational
slicing [7-9]. Denotational semantics, however, lack
modularity and reusability [10-14]. A practicable
solution was to use monads [15] to structure
denotational semantics, with the help of monad
transformers [10, 16, 17] which can transform a given
monad into a new one with new operations. S.Liang et
al. used monads and monad transformers to specify the
semantics of programming language and called it
modular monadic semantics [18]. Based on this, this
paper proposes a first approach for program slicing
based on modular monadic semantics, called modular
monadic slicing. It can compute slices directly on
abstract syntax, without explicit construction of
intermediate structures such as dependence graphs in the
corresponding slicers.

The rest of the paper is organized as follows: In
Section 2, we briefly introduce the fundamental concepts
of modular monadic semantics through a simple
example language. The monadic program slicing
algorithms and their complexity are discussed in Section
3. In Section 4, we illustrate our monadic slicing
algorithm by analyzing in detail a sample of the example

language, with the results from our slicer prototype tool
under development. In Section 5, our novel algorithms
are discussed in associated with related works. We
conclude this paper with directions for future work in
Section 6.

2. Preliminaries

Monads were discovered in category theory in the
1950s and introduced to the semantics community by
Moggi in [15]. Monads are an abstract technique for
encapsulating details of impure features such as states,
nondeterminism and I/O used by the computations.
Formally, a monad is a triple (m, returnm, bindm),
where m is a type constructor (a map from each type a
to a corresponding type m a); returnm and bindm are
two primitive operators:

returnm :: a → m a
bindm :: m a → (a → m b) → m b

returnm a is a trivial computation that just return a as
the result, whereas m ‘bindm’ k computes m and passes
the result to the rest of the computation k.

Intuitively, a monad is a transformation on types
equipped with a composition method for transformed
values. To add a new feature to a monadic semantics,
we only need to add a semantic description of the new
feature, and change the underlying monad, but not the
semantic descriptions of the existing features.
Traditional denotational semantics maps, say, a term,
an environment and a continuation to an answer. In
contrast, monadic semantics maps terms to
computations, where the details of the environment,
store, etc. are “hidden”. The monadic style in which
the descriptions are written is far easier to read than a

typical denotational semantic description.
Moggi realized that for realistic semantics features

had to be combined, and so he presented monad
constructors that could add new notions of
computation to a monad. D.Espinosa called them
monad transformers in his system Semantic Lego [17].
A monad transformer consists of a type constructor t
and an associated function liftt, where t maps any given
monad (m, returnm, bindm) to a new monad (t m,
returnt m, bindt m); liftt is a function of type:

liftt : m a → t m a
Monad transformers provide the power needed to
represent the abstract notion of programming language
features, but still allow us to access low-level semantic
details. Multiple monad transformers can be composed
to form the underlying monad used for the semantic
specification of the high-level language.

The key of modular monadic semantics is the
division of the monad m into a series of monad
transformers, each representing a computation. What’s
more, monad transformers can be designed once and
for all [12], because they are entirely independent of
the language being described. Inspired by this, we try
to abstract the computation of program slicing as a
monad transformer. This will be discussed in next
section.

Figure 1. Some common monad transformers

State monad transformer:
type StateT s m a = s → m (s, a)
returnStateT s m x = λs. returnm (s, x)
x ‘bindStateT s m’ f = λs. {(s′, a) ← x s ; f a s′}m
liftStateT s x = λs. {a ← x ; returnm (s, a)}m
getState = λs. returnm (s, s)
setState s = λ_. returnm ((), s)

Environment monad transformer:
type EnvT ρ m a = ρ → m a
returnEnvT ρ m x = λρ. returnm x
x ‘bindEnvT ρ m’ f = λρ. {a ← x ρ ; f a ρ}m
liftEnvT ρ x = λρ. x ‘bind m’ returnm
rdEnv = λρ. returnm ρ
inEnv ρ x = λ_. x ρ

Error monad transformer:
type Err a = Ok a | Err String
type ErrT m a = m (Err a)
returnErrT m x = returnm (Ok x)
x ‘bindErrT m’ f = { a ← x ; case a of
 Ok y : f y
 Err s: returnm (Err s) }m
liftErrT x = {a ← x; returnm (Ok a) }m
err s = returnm (Err s)

Input-Output monad transformer:
type IOT m a = String → m (a, String)
returnIOT m a = λs. returnm (a, s)
x ‘bindIOT m’ f = λs. {(a, s′) ← x s ; f a s′}m
liftIOT s x = λs. {a ← x; returnm (a, s)}m
getvalue = λs. returnm (s, s)
putvalue s = λ_. returnm (s, ())

S :: = ide := l.e | S1; S2 | skip
| read ide | write l.e
| if l.e then S1 else S2 endif
| while l.e do S endwhile

Figure 2. Abstract syntax of W

Syn(s, L) =
case s of

“ide := l.e ” : if l ∈ L then “ide := l.e” else ε
“S1; S2 ” : Syn(S1, L); Syn(S2, L)
“skip ” : ε
“read ide ” : if ide ∈ {v} ∪ U

L
fsRe

∈l
)l.e(then “read ide” else ε

“write l.e ” : if v ∈ Refs(l.e) then “write l.e” else ε
“if l.e then S1 else S2 endif ” : if (Syn(S1, L) = Syn(S2, L) = ε)∧(l ∉ L) then ε

else “if l.e then Syn(S1, L) else Syn(S2, L) endif ”
“while l.e do S endwhile ” : if (Syn(S, L) = ε)∧(l ∉ L) then ε

else “while l.e do Syn(S, L) endwhile ”

Figure 4. The definition of Syn(s, L)

Figure 1 describes some common monad transformers
which are similar to the ones given in [12, 15, 16, 18, 19].

For the purpose of this paper, we will focus our
attention on a simple imperative language W. Its abstract
syntax is provided in Figure 2, where S ranges over
statements Stmt, ide ranges over a set of identifiers
Ide, and l.e range over a set of labeled expressions
Exp. The expressions, whose syntax is left unspecified
for the sake of generality, are uniquely labeled. We
assume that the labeled expressions have no side-effects.

In modular monadic semantics, the monad definition is
simply a composition of the corresponding monad
transformers, applied to a base monad. In this paper,
we use the input/output monad IO as the base monad.
We then select some monad transformers such as EnvT,
StateT, ErrT showed in Figure 1, and apply them to the
base monad IO, forming the resulting monad ComptM:

ComptM ≡ (EnvT ⋅ StateT ⋅ ErrT) IO
Now the formal semantic description of language W
can be given in Figure 3. In Figure 3, the identifier Fix

denotes a fixpoint operator; xtdEnv and lkpEnv are the
update and lookup operator of environments Env,
respectively; updSto is the update function of stores
Loc; rdEnv and inEnv, putValue and getValue are the
basic operators of EnvT and IOT showed in Figure 1,
respectively.

To conveniently discuss program slices later,
following G.A.Venkatesh’s idea in [9], we define
Syn(s, L) for language W in Figure 4, where s is a W-
program analyzed, v the variable of interest in a slicing
criterion, ε null result, and Refs(l.e) the set of variables
occurring in expression l.e. It guides us how to
construct a syntactically valid subprogram of s from
the set of labels of labeled expressions L. Furthermore,
it allows us to concentrate on the labeled expressions
in a program analyzed, since they are predominant
parts in a program slice, and other parts can be
captured through Syn(s, L).

Domains:
loc: Loc (Stores); v: Value (Values)

Semantics Functions:
S :: Stmt → ComptM ()
E :: Exp → ComptM Value

S ide := l.e = {v ← E l.e ; loc ← lkpEnv(ide, rdEnv); updSto(loc, return v)}
S S1; S2 = {S S 1 ; S S2 }
S skip = return ()
S if l.e then S 1 else S 2 endif = {v ← E l.e ;

case v of tt → S S 1 ;
ff → S S 2 }

S while l.e do S endwhile = Fix (λf.{v ← E l.e ;
case v of tt → f ⋅ S S ;

ff → return () })
S read ide = {loc ← lkpEnv(ide, rdEnv); v ← getValue; updSto(loc, return v)}
S write l.e = { v ← E l.e ; putValue (return v) }

Figure 3. Modular monadic semantics of W

3. Modular Monadic Program Slicing

3.1 Slice Monad Transformer

In this section, we try to abstract the computation of
program slicing as an independent entity, slice monad
transformer. This work is significant because a monad
transformer can be designed once and for all. We give
the definition of slice monad transformer in Figure 5,
where L denotes a set of labels of expressions that
were required to compute the current expression.

A slice monad transformer SliceT L m, takes an
initial set of labels, and returns a computation of a pair
of the resulting value and the new set of labels. The
lifting function liftSliceT L says that a computation in the
monad m behaves identically in the monad SliceT L m
and makes no changes to the set of labels. The operation
updateSlice supports update of program slices.

In form, the slice monad transformer is similar to the
state monad transformer. So, the correctness proof of
its definition can be obtained easily by following the
proofs for transformer StateT in [12] or [20].

3.2 Monadic Program Slicing Algorithms

For simplicity, we only consider end slicing with
respect to a slicing criterion <p, v>, where p is the end
point of a program, and v a variable. This can be easily
generalized to a set of points and a set of variables at each
point by taking the union of the individual slices [2].

Based on modular monadic semantics of a program
language, the monadic algorithms for dynamic slicing
and static slicing are provided in Figure 6 (where
INPUT denotes the actual input during an execution),
and Figure 7 respectively. These two algorithms are
very similar except for Step 3. The main idea of monadic
slicing algorithm can be briefly stated as follows: for
obtaining the program slice w.r.t. a slicing criterion, we
firstly apply the program-slice transformer SliceT to
semantic description of the program analyzed. It makes
the resulting semantic description include the program-
slice semantic feature. According to this semantic
description, we then execute this program with an
input (for dynamic slicing) or analyze each statement
in sequence (for static slicing). Finally we will obtain
the program slices of all single variables in the
program, including the program slice of the variable of
interest.

In Step 1, we initialize the set of labels, L, and all
original slices in the table Slices with null set. The data
structure of program slices Slices is defined as follows:

type Var = String
type Labels = [Int]
type Slices = [(Var, Labels)]

getSli :: ComptM Slices
setSli :: Slices → ComptM Slices
lkpSli :: Var → Slices → ComptM Labels
xtdSli ::

(Var, ComptM Labels)→Slices→ComptM ()
mrgSli :: Slices → Slices → ComptM Slices

where [] denotes a table data structure. Five operators
getSli, setSli, lkpSli, xtdSli and mrgSli, represent to
return and setup the current table of program slices,
lookup, update and merge a slice corresponding to a
variable in a given table of slices, respectively.

In Step 2, we want to combine the feature of
program slicing into semantic descriptions through
monad transformer SliceT given in Figure 5. As for
language W, we compose SliceT with other transformers

Slice monad transformer:
type SliceT L m a = L → m (a, L)
returnSliceT L m x = λL. returnm (x, L)
m ‘bindSliceT L m’ f = λL. {(a, L′) ← m L; f a L′}m
liftSliceT L m = λL. {a←m; returnm (a, L)}m
updateSlice f = λL. returnm (f L, L)

Figure 5. Slice monad transformer

Input: Slicing criterion <INPUT, p, v>
Output: Dynamic slice
1. Initialize the set L and the table Slices.
2. Add the feature of program slicing into

semantic descriptions in a modular way,
through slice transformer SliceT.

3. Execute the program analyzed with INPUT in
accordance with the semantic description in
Step 2, obtaining the final Slices.

4. Returning the final dynamic slicing result
according to Slices and Syn(s, L), where L =
lkpSli (v, getSli).

Figure 6. Dynamic slicing algorithm

Input: Slicing criterion <p, v>
Output: Static slice
1. Initialize the set L and the table Slices.
2. Add the feature of program slicing into

semantic descriptions in a modular way,
through slice transformer SliceT.

3. Compute static slices of each statement in
sequence basing on the semantic description in
Step 2, obtaining the final Slices.

4. Returning the final static slicing result
according to Slices and Syn(s, L), where L =
lkpSli (v, getSli).

Figure 7. Static slicing algorithm

(e.g. EnvT, StateT, ErrT) to form the resulting monad
ComptM as follows:

 ComptM ≡ (SliceT ⋅ StateT ⋅ EnvT ⋅ ErrT) IO
where the order of monad transformers can be changed
at random. Meanwhile, we need to reify the intermediate
set L′ in bindSliceT L m as following:

L′ = {l} ∪ L ∪ U
)l.e(

),(
fsRer

getSlirlkpSli
∈

 (*)

This relation reflects when and how to change the set L.
In addition, for recording the result of program slicing,
we ought to add the operator xtdSli into semantic
descriptions of assignment statements as the following
bold terms:

ide := l.e
= λL.{ v ← E l.e ;

L′ ← {l} ∪ L ∪ U
)l.e(

),(
fsRer

getSlirlkpSli
∈

;

loc ← lkpEnv(ide, rdEnv);
updSto(loc, return v);
xtdSli(ide, L′, getSli) }

Similar to the way in forward dynamic slicing [21],
in our modular monadic approach, the program slices
for associated variables of each statement are computed
immediately after this statement is executed/analyzed.
After the last statement is executed/analyzed, the
individual program slices for all variables of the
program executed have been obtained.

Concretely, in monadic dynamic slicing algorithm,
we compute dynamic slices while executing the
program analyzed with INPUT (cf. Step 3 in Figure 6),
according to the semantic description including the
feature of program slicing. After the last statement is
executed, we obtain a table Slices that includes
individual dynamic slices for all variables. In contrast,
in static slicing algorithm, we need to capture the
statements that possibly affect the variable in the
slicing criterion, besides those that actually affect this
variable as dynamic slicing do. Therefore, we ought to
modify semantic descriptions of conditional statement
and loop statement, and to add in the operator mrgSli
as following.

if l.e then S1 else S2 endif
= λL.{ v ← E l.e ;

L′ ← {l} ∪ L ∪ U
)l.e(

),(
fsRer

getSlirlkpSli
∈

;

T ← getSli ;T1 ← { S1 L′; getSli};
setSli(T); T2 ← { S2 L′; getSli};
mrgSli(T1, T2) }

while l.e do S endwhile
= Fix (λf. λL.{v ← E l.e ;

L′ ← {l} ∪ L ∪ U
)l.e(

),(
fsRer

getSlirlkpSli
∈

;

T ← getSli;
T′ ← {f L′⋅ S L′; getSli};
mrgSli(T, T′) })

The correctness proofs of our program slicing
algorithm can refer to the way in [9, 22]. Informally,
the term L and U

)l.e(
),(

fsRer
getSlirlkpSli

∈

in the definition

of L′ (see Equation (*)) can capture control
dependences between statements and data dependences
between variables, respectively.

3.3 The Complexity of the Algorithms

In this section, we will analyze the complexity of

the monadic slicing algorithms presented in Section
3.2. The measures of system size used below are those
associated with the data structure of program slice
Slices (which is a Hash table).

In a monadic compiler/interpreter, our slice monad
transformer could be modularly and safely combined
into the semantic buildings, so the complexity analysis
is restricted to L′ and Syn(s, L) of a concrete
programming language. The intermediate label set L′
can be determined in time O(v), where v refers to the
number of single variables in the program
analyzed/executed. To determine the Syn(s, L) shown
in Figure 4 may cost O(m), where m is the number of
labeled expressions in the program. Therefore the time
cost of the predominant part of program slicing in the
monadic slicing algorithm is bounded by O(v × n),
where n is the number of all labeled expressions
appeared (perhaps repeatly) in the sequence of
analyzing/executing the program. In addition, an extra
time cost O(v × m) needs to get the executable slices of
all single variables. Now we can see that the total time
cost is O(v × n + v × m). Since we finally obtain the
slices of all variables after the last statement is
analyzed/executed, the program slice of each variable,
on the average, costs O(n +m), which is linear.

To analyze the space complexity of the algorithms,
we pay our attention to the constructions Refs(l.e),
Slices, L′ and L. We need space O(v × v) and O(v × m)
to save Refs(l.e) and Slices, respectively. According to
the definition of slice monad transformer SliceT in
Figure 1, we need to introduce more intermediate
labels when SliceT is applied to loop statements (eg.
while statements), and can allocate a same space to the
intermediate labels L′ of other statements. So it takes
the space O(k × m) to save intermediate labels, where k
refers to the maximal times of analyzing/executing the

loop statements in the program. The label set L will
cost the space O(m). Therefore, the total space cost is

O(v × v + v × m + k × m), which is irrelated to n.

4. A Case Study

This section illustrates the dynamic slicing algorithm
proposed in Figure 6 through the example W-program
given in Figure 8 (1). We will use our modular
monadic algorithm to compute the dynamic slice with
respect to <(a=0, n=2), 12, s>.

We firstly label each expression in the example
program with a unique label. Here we employ the line
number of position where the expression occurs in
source program. The resulting labeled expressions l.e
and their corresponding set Refs(l.e) are showed in
Figure 9.

Then, let INPUT is a=0 and n=2, and execute the
program with INPUT according to the modular monadic
semantics that includes the feature of program slicing.
The following set is corresponding execution list,
which comprises labels of instructions (i.e. statements
or their snippets) that are the same order as they have
been executed:

 {1, 2, 3, 4, 5, 7, 8, 10, 11, 7, 8, 10, 11, 7, 12 }

Lastly, as stated in monadic dynamic slice algorithm,

the dynamic slices for associated variables of each
instruction are computed immediately after this
instruction is executed. In detail, while instructions in
the above sequence list are being executed, the initial
set L and dynamic slice table Slices are modified,
according to Step 2 and 3 in our algorithm. In other
words, after a labeled expression is executed, the set L
is transformed into intermediate set L′ through
Equation (*), and this new set will be passed down the
rest of the execution of the corresponding whole
statement to this expression. Moreover, if this
statement is an assignment one, the dynamic slice
Slices need to update through the term xtdSli (ide, L′,
getSli).

For instance, at the beginning of executing for first
time the 10th instruction in above list, the corresponding
table Slices is showed in Figure 10 (1). At one time, the
initial set L, passing through executions of the 7th and
8h instruction, is turned into an intermediate set L′′ as
follows:

L′′ = {8} ∪ L′ ∪ lkpSli (a, getSli) = {3, 7, 8}
where

L′= {7}∪L ∪ (lkpSli(i, getSli) ∪ lkpSli(n, getSli))
= {3, 7}

After the first 10th instruction is executed, the
intermediate set is changed to L′′′:

L′′′ = {10} ∪ L′′ ∪ lkpSli (s, getSli)
= {10} ∪ {3, 7, 8} ∪{4}
= {3, 4, 7, 8, 10}

(1) Source program (2) Dynamic slice w.r.t s

Figure 8. A sample W-program and its slice w.r.t <(a=0, n=2), 20, s>

1 read n ;
2 read a ;
3 i := 1 ;
4 s := 1 ;
5 if (a > 0) then
6 s := 0

else skip endif ;
7 while (i <= n) do
8 if (a > 0) then
9 s := s + 2
10 else s := s * 2 endif
11 i := (i + 1) ;

endwhile ;
12 write (s + 4)

1 read n ;
2 read a ;
3 i := 1 ;
4 s := 1 ;

7 while (i <= n) do
8 if (a > 0) then

10 else s := s * 2 endif
11 i := (i + 1) ;

endwhile ;
12 write (s + 4)

l. e Refs(l.e)
3. i := 1 { i }
4. s := 1 { s }
5. a > 0 { a }
6. s := 0 { s }
7. i <= n { i , n }
8. a > 0 { a }
9. s :=s+2 { s }

10. s :=s*2 { s }
11. i :=i+1 { i }
12. s + 4 { s }

Figure 9. l.e and Refs(l.e)

Furthermore, the 10th is an assignment one, so the
related data in Slices need to update through xtdSli.
Here L′′′ replaces the dynamic slice of variable s before
execution, and now the table Slices is given in Figure
10 (2). Going on in this way until finishing the
execution of the last instruction (i.e. 12th) in above
sequence list, we will obtain the final Slices as shown
in Figure 10 (3). According to it and Syn(s, L), we
could get the final result of dynamic slice, shown in

Figure 8 (2), with respect to slice criterion <(a=0,n=2),
12, s>.

On the basis of Labra’s language prototyping system
LPS [23], which facilitates the modular development
of interpreters from modular monadic semantics, we
are now developing a monadic slicer [24]. As for this
example, we can obtain the result (shown in Figure 11)
from the current monadic slicer, where we didn’t
consider the function Syn(s, L) and directly include the
Read and Write statements in the results.

5. Related Work

Most of the existing slicing algorithms rely on
relation graphs such as system dependence graphs
(SDG) or program dependence graphs (PDG). A few
program slicing methods focused on the semantics of
programs.

G.Canfora et al.’s conditioned slicing [25] adds a
condition in a slicing criterion. Statements that do not

satisfy the condition are deleted from the slice.
M.Harman et al.’s amorphous slicing [26] allows for
any simplifying transformations which preserve this
semantic projection. These two methods are not
directly based on formal semantics of a program.
P.A.Hauser’s denotational slicing [7, 8] employs the
functional semantics of a program language in the
denotational (and static) program slicer. Venkatesh
also took account of denotational slicing with formal
slicing algorithms including dynamic and static [9]. This
approach is indeed based on the standard denotational

(1) before execute first 10th (2) after execute first 10th (3) after execute the last instruction

Figure 10. Slices during execute instructions with INPUT

Var Labels
n φ
a φ

i {3}

s {3, 4, 7, 8, 10}

Var Labels
n φ
a φ

i {3}

s {4}

Var Labels
n φ
a φ

i {3, 7, 11}

s {3, 4, 7, 8, 10, 11}

READ 1 ds = [("n",[1])]
READ 2 ds = [("n",[1]),("a",[2])]
ASSIGN 3 ds' = [("n",[1]),("a",[2]),("i",[3])]
ASSIGN 4 ds' = [("n",[1]),("a",[2]),("i",[3]),("s",[4])]
IF 5 ds = [("n",[1]),("a",[2]),("i",[3]),("s",[4])]
WHILE 7 ds = [("n",[1]),("a",[2]),("i",[3]),("s",[4])]
IF 8 ds = [("n",[1]),("a",[2]),("i",[3]),("s",[4])]
ASSIGN 10 ds' = [("n",[1]),("a",[2]),("i",[3]),("s",[1,2,3,4,7,8,10])]
ASSIGN 11 ds' = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])]
WHILE 7 ds = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])]
IF 8 ds = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])]
ASSIGN 10 ds' = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])]
ASSIGN 11 ds' = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])]
WHILE 7 ds = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])]
WRITE 12 ds = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11,12])]
Value = Left 8
DSlices = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11,12])]

Figure 11. The dynamic slicing result from our monadic slicer

semantics of a program language. Inspired by this, we
have proposed a new formal method for program
slicing, called modular monadic slicing, which is
based on modular monadic semantics.

Compared with the existing slicing methods, the
modular monadic slicing has excellent flexibility and
reusability properties, because it have abstracted the
computation of program slicing as an language-
independence object, slice monad transformer. The
modular monadic slicing can compute slices directly
on abstract syntax, without explicit construction of
intermediate structures such as data flow graphs or
dependence graphs in slicers. Despite this, it is still
feasible, because there is a clear operational
interpretation of modular monadic semantics, and
some modular compilers/interpreters using monad
transformers have already been constructed in [11, 12,
18, 20, 23, 27].

In respect of efficiency, our monadic algorithms are
not less precise than PDG-based ones as shown from the
example in Section 4. This is because the term L and
U

)l.e(
),(

fsRer
getSlirlkpSli

∈

in the definition of L′ can

accurately capture control dependences and data
dependences respectively, which are the base of PDG-
based algorithms. According to the complexity analysis
in Sections 3.3, the space complexity is irrelated to the
length of the program analyzed/executed; the time
complexity of each variable is averagely linear, i.e.
O(n + m).

6. Summaries

Program slicing is an important decomposition

technique. It can be roughly classified as static slicing
and dynamic slicing, according to whether they only
use statically available information or compute those
statements that influence the value of a variable
occurrence for a specific program input. It has been
widely used in many software activities, such as
software analyzing, understanding, debugging, testing,
and maintenance.

In this paper, we have proposed a novel approach
for program slicing; called it modular monadic
program slicing as it is based on modular monadic
semantics. It has excellent flexibility and reusability
properties comparing with the existing program slicing
algorithms. Furthermore, it is feasible, because modular
monadic semantics is executable and some modular
compilers/interpreters have already been existed. We
now developed a program-slice prototype based on a
modular monadic interpreter [23, 24].

In our future work, we will consider modular
monadic slicing in the present of aliasing, pointer and
array. At the same time, we will complete our
prototype of monadic slicer and present the
comparisons with other slicing methods in experiment.

Acknowledgements

The authors thank several anonymous referees for
their constructive reviews and comments.

Reference

[1] F. Tip, “A Survey of Program Slicing Techniques”,

Journal of Programming Languages, 1995, vol. 3, no. 3,
pp. 121-189.

[2] D.Binkley, and K.B. Gallagher, “Program Slicing”,
Advances in Computers, 1996, vol. 43, pp. 1-50.

[3] M. Kamkar, “An Overview and Comparative Classification
of Program Slicing Techniques”, Journal of Systems and
Software, 1995, vol. 31, no. 3, pp. 197-214.

[4] M. Harman, and R.M. Hierons, “An Overview of Program
Slicing”, Software Focus, 2001, vol. 2, no. 3, pp. 85-92.

[5] M. Weiser, “Program Slicing”, IEEE Transaction on
Software Engineering, 1984, vol. 16, no. 5, pp. 498-509.

[6] K.J. Ottenstein, and L.M. Ottenstein, “The program
dependence graph in a software development environment”,
ACM SIGPLAN Notices, 1984, vol.19, no. 5, pp. 177-184.

[7] P.A. Hausler, “Denotational Program Slicing”, Proceeding
of 22th Annual Hawaii International Conference on System
Sciences, 1989, vol. 2, pp. 486-495.

[8] L. Ouarbya, S. Danicic, M. Daoudi, M. Harman, and C.
Fox, “A Denotational Interprocedural Program Slicer”,
Proceeding of 9th IEEE Working Conference on Reverse
Engineering, IEEE Press, Virginia, 2002, pp. 181-189.

[9] G. A. Venkatesh, “The Semantic Approach to Program
Slicing”, ACM SIGPLAN Conference on Programming
Language Design and Implementation, Toronto, Canada,
1991, pp. 26-28.

[10] E.Moggi, “Notions of Computation and Monads”,
Information and Computation, 1991, vol. 93, pp. 55-92.

[11] S. Liang, and P. Hudak, “Modular Denotational
Semantics for Compiler Construction”, Proceeding of 6th
European Symposium on Programming Languages and
Systems, ESOP’96. LNCS 1058, Springer-Verlag, Berlin,
1996, pp. 219-234.

[12] K. Wansbrough, “A Modular Monadic Action
Semantics”, Master thesis, University of Auckland,
Auckland, 1997.

[13] P.D. Mosses, “Semantics, Modularity, and Rewriting
Logic”, Proceeding of 2nd International Workshop on
Rewriting Logic and its Applications, ENTCS 15,
Elsevier Press, Netherlands, 1998.

[14] J. Power, “Modularity in Denotational Semantics”,
Proceeding of 13th Annual Conference on Mathematical

Foundations of Programming Semantics, Elsevier Press,
New York, 2000.

[15] E. Moggi, “An Abstract View of Programming
Languages”, LFCS Report, ECS-LFCS-90-113, University
of Edinburgh, 1989. http://www.lfcs.informatics.ed.ac.uk
/reports/90/ECS-LFCS-90-113/.

[16] P. Wadler, “Comprehending monads”, ACM Conference
on Lisp and Functional Programming, ACM Press,
France, 1990, pp. 61-78.

[17] D. Espinosa, “Semantic Lego”, PhD dissertation,
Columbia University, Columbia, 1995.

[18] S. Liang, P. Hudak, and M. Jones, “Monad Transformers
and Modular Interpreters”, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL’95, ACM Press, New York, 1995, pp. 333-343.

[19] J.E. Labra Gayo, M.C. Luengo Diez, J.M. Cueva
Lovelle, and A. Cernuda del Rio, “Reusable Monadic
Semantics of Object Oriented Programming Languages”,
Proceeding of 6th Brazilian Symposium on Programming
Languages, SBLP’02, PUC-Rio University, Brazil, 2002.

[20] S. Liang, “Modular Monadic Semantics and Compilation”,
PhD dissertation, University of Yale, Yale, 1998.

[21] G.Tibor, B. Árpád, and F. István, “An Efficient
Relevant Slicing Method for Debugging”, Software
Engineering Notes, Software Engineering-ESEC/FSE’99
Springer ACM SIGSFT, 1999, vol. 24, no. 6, pp. 303-321.

[22] G. A. Venkatesh, “Semantics of program slicing”,
Bellcore TM-ARH-018561, 1990.

[23] J.E. Labra Gayo, M.C. Luengo Diez, J.M. Cueva
Lovelle, and A. Cernuda del Rio, “A Language
Prototyping System Using Modular Monadic Semantics”,
Workshop on Language Definitions, Tools and
Applications, LDTA’01, Netherlands, 2001.

[24] Website. https://sourceforge.net/projects/lps.
[25] G. Canfora, A. Cimitile, and A. De Lucia, “Conditioned

Program Slicing”, Information and Software Technology,
1998, vol. 40, no. 11/12, pp. 595-607.

[26] M. Harman, and S. Danicic, “Amorphous Program
Slicing”, IEEE International Workshop on Program
Comprehension, IWPC’97, IEEE CS Press, Los Alamitos,
1997, pp. 70-79.

[27] W. Kahl, “A Modular Interpreter Built with Monad
Transformers”, Lectures on Functional Programming,
CAS 781, 2003. http://www.cas.mcmaster.ca/~kahl/FP/
2003/

