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Abstract  

 
Program slicing is a well-known program analysis 

technique that extracts the elements of a program related to 
a particular computation. Based on modular monadic 
semantics of a programming language, this paper 
presents a new formal method for slicing, called modular 
monadic slicing, by abstracting the computation of 
slicing as a slice monad transformer. With the use of slice 
transformer, the feature of program slicing can be 
combined in a modular way into semantic descriptions of 
the program analyzed. According to these, this paper 
gives both monadic dynamic and static slicing algorithms. 
They compute program slices directly on abstract syntax, 
without the needs to explicitly construct intermediate 
structures such as dependence graphs, or to record an 
execution history in dynamic slicing algorithm.  
 
 
1. Introduction 
 

Program slicing is a well-known program analysis 
technique that extracts the elements of a program related 
to a particular computation. A program slice consists of 
those statements of a program that may directly or 
indirectly affect the variables computed at a given 
program point, referred to as a slicing criterion. Program 
slicing has applications in program comprehension, 
testing and debugging, re-engineering, and software 
maintenance [1-4].  

In reverse engineering, program slicing provides a 
toolset for abstracting out of the source codes the 
design decisions and rationale from the initial 
development and understanding the algorithms chosen. 
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In software maintenance, program slicing can help 
maintainers to determine whether a change at some 
place in a program will affect the behavior of other 
parts of the program. Program slicing can be used in 
software quality assurance to locate all code that 
contributes to the value of variables that might be part 
of a safety critical component. 

The original program slicing method was expressed 
as a sequence of data flow analysis problems [5]. An 
alternative approach relied on program dependence 
graphs (PDG) [6]. Most of the existing slicing methods 
were evolved from these two approaches. As the 
behavior of a program is determined by the semantics of 
the language, it is reasonable to expect an approach for 
program slicing based on formal semantics of a program.  

The program slicing methods focused on the 
semantics of programs are mainly based on the 
standard denotational semantics, i.e. denotational 
slicing [7-9]. Denotational semantics, however, lack 
modularity and reusability [10-14]. A practicable 
solution was to use monads [15] to structure 
denotational semantics, with the help of monad 
transformers [10, 16, 17] which can transform a given 
monad into a new one with new operations. S.Liang et 
al. used monads and monad transformers to specify the 
semantics of programming language and called it 
modular monadic semantics [18]. Based on this, this 
paper proposes a first approach for program slicing 
based on modular monadic semantics, called modular 
monadic slicing. It can compute slices directly on 
abstract syntax, without explicit construction of 
intermediate structures such as dependence graphs in the 
corresponding slicers. 

The rest of the paper is organized as follows: In 
Section 2, we briefly introduce the fundamental concepts 
of modular monadic semantics through a simple 
example language. The monadic program slicing 
algorithms and their complexity are discussed in Section 
3. In Section 4, we illustrate our monadic slicing 
algorithm by analyzing in detail a sample of the example 



language, with the results from our slicer prototype tool 
under development. In Section 5, our novel algorithms 
are discussed in associated with related works. We 
conclude this paper with directions for future work in 
Section 6. 

 
2. Preliminaries 
 

Monads were discovered in category theory in the 
1950s and introduced to the semantics community by 
Moggi in [15]. Monads are an abstract technique for 
encapsulating details of impure features such as states, 
nondeterminism and I/O used by the computations. 
Formally, a monad is a triple (m, returnm, bindm), 
where m is a type constructor (a map from each type a 
to a corresponding type m a); returnm and bindm are 
two primitive operators: 

returnm ::  a → m a 
bindm ::   m a → (a → m b) → m b 

returnm a is a trivial computation that just return a as 
the result, whereas m ‘bindm’ k computes m and passes 
the result to the rest of the computation k. 

Intuitively, a monad is a transformation on types 
equipped with a composition method for transformed 
values. To add a new feature to a monadic semantics, 
we only need to add a semantic description of the new 
feature, and change the underlying monad, but not the 
semantic descriptions of the existing features. 
Traditional denotational semantics maps, say, a term, 
an environment and a continuation to an answer. In 
contrast, monadic semantics maps terms to 
computations, where the details of the environment, 
store, etc. are “hidden”. The monadic style in which 
the descriptions are written is far easier to read than a 

typical denotational semantic description. 
Moggi realized that for realistic semantics features 

had to be combined, and so he presented monad 
constructors that could add new notions of 
computation to a monad. D.Espinosa called them 
monad transformers in his system Semantic Lego [17]. 
A monad transformer consists of a type constructor t 
and an associated function liftt, where t maps any given 
monad (m, returnm, bindm) to a new monad (t m, 
returnt m, bindt m); liftt is a function of type: 

liftt :   m a → t m a 
Monad transformers provide the power needed to 
represent the abstract notion of programming language 
features, but still allow us to access low-level semantic 
details. Multiple monad transformers can be composed 
to form the underlying monad used for the semantic 
specification of the high-level language.  
 
 
 
 
 
 
 
 
 

The key of modular monadic semantics is the 
division of the monad m into a series of monad 
transformers, each representing a computation. What’s 
more, monad transformers can be designed once and 
for all [12], because they are entirely independent of 
the language being described. Inspired by this, we try 
to abstract the computation of program slicing as a 
monad transformer. This will be discussed in next 
section. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.   Some common monad transformers 

State monad transformer: 
type StateT s m a = s → m (s, a) 
returnStateT s m x   = λs. returnm (s, x) 
x ‘bindStateT s m’ f  = λs. {(s′, a) ← x s ; f a s′}m 
liftStateT s  x      = λs. {a ← x ; returnm (s, a)}m 
getState         = λs. returnm (s, s) 
setState  s         = λ_. returnm ((), s) 

Environment monad transformer: 
type EnvT ρ m a = ρ → m a 
returnEnvT ρ m  x  = λρ. returnm x 
x ‘bindEnvT ρ m’ f  = λρ. {a ← x ρ ; f a ρ}m
liftEnvT ρ  x      = λρ. x ‘bind m’ returnm 
rdEnv          = λρ. returnm ρ  
inEnv ρ x       = λ_. x ρ 

Error monad transformer: 
type Err a     = Ok a | Err String 
type ErrT m a  = m (Err a) 
returnErrT m x   = returnm (Ok x) 
x ‘bindErrT m’ f  = { a ← x ; case a of  
                 Ok y : f y 
                 Err s: returnm (Err s) }m 
liftErrT  x      = {a ← x; returnm (Ok a) }m 
err  s        = returnm (Err s) 

Input-Output monad transformer: 
type IOT m a   = String → m (a, String) 
returnIOT m a   = λs. returnm (a, s) 
x ‘bindIOT m’ f   = λs. {(a, s′) ← x s ; f a s′}m 
liftIOT s  x      = λs. {a ← x; returnm (a, s)}m 
getvalue       = λs. returnm (s, s) 
putvalue  s    = λ_. returnm (s, ()) 

S :: = ide := l.e | S1; S2 | skip  
| read ide | write l.e 
| if l.e then S1 else S2 endif  
| while l.e do S endwhile  

 
Figure 2.   Abstract syntax of W 



Syn(s, L) =  
case s of  

“ide := l.e ” :                           if l ∈ L then “ide := l.e”  else  ε 
“S1; S2 ” :                                 Syn(S1, L); Syn(S2, L) 
“skip ” :                                   ε 
“read ide ” :                             if ide ∈ {v} ∪ U

L
fsRe

∈l
)l.e( then “read ide”  else  ε 

“write l.e ” :                             if v ∈ Refs(l.e) then “write l.e”  else  ε 
“if l.e then S1 else S2 endif ” :  if (Syn(S1, L) = Syn(S2, L) = ε)∧(l ∉ L) then ε  

else  “if l.e then Syn(S1, L) else Syn(S2, L) endif ” 
“while l.e do S endwhile ” :     if (Syn(S, L) = ε)∧(l ∉ L) then ε   

else “while l.e do Syn(S, L) endwhile ” 
 

Figure 4.     The definition of Syn(s, L) 

Figure 1 describes some common monad transformers 
which are similar to the ones given in [12, 15, 16, 18, 19]. 

For the purpose of this paper, we will focus our 
attention on a simple imperative language W. Its abstract 
syntax is provided in Figure 2, where S ranges over 
statements Stmt, ide ranges over a set of identifiers 
Ide, and l.e range over a set of labeled expressions 
Exp. The expressions, whose syntax is left unspecified 
for the sake of generality, are uniquely labeled. We 
assume that the labeled expressions have no side-effects. 

In modular monadic semantics, the monad definition is 
simply a composition of the corresponding monad 
transformers, applied to a base monad. In this paper, 
we use the input/output monad IO as the base monad. 
We then select some monad transformers such as EnvT, 
StateT, ErrT showed in Figure 1, and apply them to the 
base monad IO, forming the resulting monad ComptM: 

ComptM ≡ (EnvT ⋅ StateT ⋅ ErrT) IO 
Now the formal semantic description of language W 
can be given in Figure 3. In Figure 3, the identifier Fix 

denotes a fixpoint operator; xtdEnv and lkpEnv are the 
update and lookup operator of environments Env, 
respectively; updSto is the update function of stores 
Loc; rdEnv and inEnv, putValue and getValue are the 
basic operators of EnvT and IOT showed in Figure 1, 
respectively. 

To conveniently discuss program slices later, 
following G.A.Venkatesh’s idea in [9], we define 
Syn(s, L) for language W in Figure 4, where s is a W-
program analyzed, v the variable of interest in a slicing 
criterion, ε null result, and Refs(l.e) the set of variables 
occurring in expression l.e. It guides us how to 
construct a syntactically valid subprogram of s from 
the set of labels of labeled expressions L. Furthermore, 
it allows us to concentrate on the labeled expressions 
in a program analyzed, since they are predominant 
parts in a program slice, and other parts can be 
captured through Syn(s, L). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Domains: 
loc: Loc  (Stores);       v: Value  (Values)          

Semantics Functions: 
S :: Stmt → ComptM ()       
E :: Exp → ComptM Value 

S ide := l.e  = {v ← E l.e ; loc ← lkpEnv(ide, rdEnv); updSto(loc, return v)} 
S S1; S2  = {S S 1 ; S S2 } 
S skip  = return () 
S if l.e then S 1 else S 2 endif  = {v ← E l.e ;  

case v of  tt → S S 1 ; 
ff → S S 2   } 

S while l.e do S endwhile  = Fix (λf.{v ← E l.e ;  
case v of  tt → f ⋅ S S ;  

ff → return ()  } )     
S read ide  = {loc ← lkpEnv(ide, rdEnv); v ← getValue; updSto(loc, return v)} 
S write l.e  = { v ← E l.e ; putValue (return v) } 
 

Figure 3.   Modular monadic semantics of W 



3. Modular Monadic Program Slicing 
 
3.1 Slice Monad Transformer 
 

In this section, we try to abstract the computation of 
program slicing as an independent entity, slice monad 
transformer. This work is significant because a monad 
transformer can be designed once and for all. We give 
the definition of slice monad transformer in Figure 5, 
where L denotes a set of labels of expressions that 
were required to compute the current expression. 

A slice monad transformer SliceT L m, takes an 
initial set of labels, and returns a computation of a pair 
of the resulting value and the new set of labels. The 
lifting function liftSliceT L says that a computation in the 
monad m behaves identically in the monad SliceT L m 
and makes no changes to the set of labels. The operation 
updateSlice supports update of program slices. 

In form, the slice monad transformer is similar to the 
state monad transformer. So, the correctness proof of 
its definition can be obtained easily by following the 
proofs for transformer StateT in [12] or [20]. 

 
 
 
 
 
 
 
 
 
 
 

3.2 Monadic Program Slicing Algorithms 
 

For simplicity, we only consider end slicing with 
respect to a slicing criterion <p, v>, where p is the end 
point of a program, and v a variable. This can be easily 
generalized to a set of points and a set of variables at each 
point by taking the union of the individual slices [2]. 

Based on modular monadic semantics of a program 
language, the monadic algorithms for dynamic slicing 
and static slicing are provided in Figure 6 (where 
INPUT denotes the actual input during an execution), 
and Figure 7 respectively. These two algorithms are 
very similar except for Step 3. The main idea of monadic 
slicing algorithm can be briefly stated as follows: for 
obtaining the program slice w.r.t. a slicing criterion, we 
firstly apply the program-slice transformer SliceT to 
semantic description of the program analyzed. It makes 
the resulting semantic description include the program-
slice semantic feature. According to this semantic 
description, we then execute this program with an 
input (for dynamic slicing) or analyze each statement 
in sequence (for static slicing). Finally we will obtain 
the program slices of all single variables in the 
program, including the program slice of the variable of 
interest.  

In Step 1, we initialize the set of labels, L, and all 
original slices in the table Slices with null set. The data 
structure of program slices Slices is defined as follows: 

type Var = String 
type Labels = [Int] 
type Slices = [(Var, Labels)] 

getSli :: ComptM Slices 
setSli :: Slices → ComptM Slices 
lkpSli :: Var → Slices → ComptM Labels 
xtdSli ::  

(Var, ComptM Labels)→Slices→ComptM () 
mrgSli :: Slices → Slices → ComptM Slices  

where [] denotes a table data structure. Five operators 
getSli, setSli, lkpSli, xtdSli and mrgSli, represent to 
return and setup the current table of program slices, 
lookup, update and merge a slice corresponding to a 
variable in a given table of slices, respectively. 

In Step 2, we want to combine the feature of 
program slicing into semantic descriptions through 
monad transformer SliceT given in Figure 5. As for 
language W, we compose SliceT with other transformers 

Slice monad transformer: 
type SliceT L m a = L → m (a, L) 
returnSliceT L m x    = λL. returnm (x, L) 
m ‘bindSliceT L m’ f   = λL. {(a, L′) ← m L; f a L′}m 
liftSliceT L  m       = λL. {a←m; returnm (a, L)}m 
updateSlice  f     = λL. returnm (f L, L) 
 

Figure 5.  Slice monad transformer 

Input: Slicing criterion <INPUT, p, v> 
Output: Dynamic slice 
1. Initialize the set L and the table Slices. 
2. Add the feature of program slicing into

semantic descriptions in a modular way,
through slice transformer SliceT. 

3. Execute the program analyzed with INPUT in
accordance with the semantic description in 
Step 2, obtaining the final Slices. 

4. Returning the final dynamic slicing result 
according to Slices and Syn(s, L), where L = 
lkpSli (v, getSli).    

Figure 6.  Dynamic slicing algorithm 

Input: Slicing criterion <p, v> 
Output: Static slice  
1. Initialize the set L and the table Slices. 
2. Add the feature of program slicing into 

semantic descriptions in a modular way, 
through slice transformer SliceT. 

3. Compute static slices of each statement in 
sequence basing on the semantic description in 
Step 2, obtaining the final Slices. 

4. Returning the final static slicing result 
according to Slices and Syn(s, L), where L = 
lkpSli (v, getSli). 

Figure 7.  Static slicing algorithm 



(e.g. EnvT, StateT, ErrT) to form the resulting monad 
ComptM as follows: 

 ComptM ≡ (SliceT ⋅ StateT ⋅ EnvT ⋅ ErrT) IO 
where the order of monad transformers can be changed 
at random. Meanwhile, we need to reify the intermediate 
set L′ in bindSliceT L m as following: 

L′ = {l} ∪ L ∪ U
)l.e(

),( 
fsRer

getSlirlkpSli
∈

               (*) 

This relation reflects when and how to change the set L. 
In addition, for recording the result of program slicing, 
we ought to add the operator xtdSli into semantic 
descriptions of assignment statements as the following 
bold terms: 

ide := l.e  
= λL.{ v ← E l.e ;  

L′ ← {l} ∪ L ∪ U
)l.e(

),( 
fsRer

getSlirlkpSli
∈

;  

loc ← lkpEnv(ide, rdEnv);  
updSto(loc, return v);  
xtdSli(ide, L′, getSli)  } 

Similar to the way in forward dynamic slicing [21], 
in our modular monadic approach, the program slices 
for associated variables of each statement are computed 
immediately after this statement is executed/analyzed. 
After the last statement is executed/analyzed, the 
individual program slices for all variables of the 
program executed have been obtained.  

Concretely, in monadic dynamic slicing algorithm, 
we compute dynamic slices while executing the 
program analyzed with INPUT (cf. Step 3 in Figure 6), 
according to the semantic description including the 
feature of program slicing. After the last statement is 
executed, we obtain a table Slices that includes 
individual dynamic slices for all variables. In contrast, 
in static slicing algorithm, we need to capture the 
statements that possibly affect the variable in the 
slicing criterion, besides those that actually affect this 
variable as dynamic slicing do. Therefore, we ought to 
modify semantic descriptions of conditional statement 
and loop statement, and to add in the operator mrgSli 
as following. 

if l.e then S1 else S2 endif   
= λL.{ v ← E l.e ;  

L′ ← {l} ∪ L ∪ U
)l.e(

),( 
fsRer

getSlirlkpSli
∈

; 

T ← getSli ;T1 ← { S1 L′; getSli};  
setSli(T); T2 ← { S2 L′; getSli}; 
mrgSli(T1, T2)  } 

while l.e do S endwhile   
= Fix (λf. λL.{v ← E l.e ;  

L′ ← {l} ∪ L ∪ U
)l.e(

),( 
fsRer

getSlirlkpSli
∈

;  

T ← getSli;  
T′ ← {f L′⋅ S L′; getSli}; 
mrgSli(T, T′)    } ) 

The correctness proofs of our program slicing 
algorithm can refer to the way in [9, 22]. Informally, 
the term L and U

)l.e(
),( 

fsRer
getSlirlkpSli

∈

in the definition 

of L′ (see Equation (*)) can capture control 
dependences between statements and data dependences 
between variables, respectively. 

 
3.3 The Complexity of the Algorithms 

 
In this section, we will analyze the complexity of 

the monadic slicing algorithms presented in Section 
3.2. The measures of system size used below are those 
associated with the data structure of program slice 
Slices (which is a Hash table). 

In a monadic compiler/interpreter, our slice monad 
transformer could be modularly and safely combined 
into the semantic buildings, so the complexity analysis 
is restricted to L′ and Syn(s, L) of a concrete 
programming language. The intermediate label set L′ 
can be determined in time O(v), where v refers to the 
number of single variables in the program 
analyzed/executed. To determine the Syn(s, L) shown 
in Figure 4 may cost O(m), where m is the number of 
labeled expressions in the program. Therefore the time 
cost of the predominant part of program slicing in the 
monadic slicing algorithm is bounded by O(v × n), 
where n is the number of all labeled expressions 
appeared (perhaps repeatly) in the sequence of 
analyzing/executing the program. In addition, an extra 
time cost O(v × m) needs to get the executable slices of 
all single variables. Now we can see that the total time 
cost is O(v × n + v × m). Since we finally obtain the 
slices of all variables after the last statement is 
analyzed/executed, the program slice of each variable, 
on the average, costs O(n +m), which is linear. 

To analyze the space complexity of the algorithms, 
we pay our attention to the constructions Refs(l.e), 
Slices, L′ and L. We need space O(v × v) and O(v × m) 
to save Refs(l.e) and Slices, respectively. According to 
the definition of slice monad transformer SliceT in 
Figure 1, we need to introduce more intermediate 
labels when SliceT is applied to loop statements (eg. 
while statements), and can allocate a same space to the 
intermediate labels L′ of other statements. So it takes 
the space O(k × m) to save intermediate labels, where k 
refers to the maximal times of analyzing/executing the 



loop statements in the program. The label set L will 
cost the space O(m). Therefore, the total space cost is 

O(v × v + v × m + k × m), which is irrelated to n. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. A Case Study 
 

This section illustrates the dynamic slicing algorithm 
proposed in Figure 6 through the example W-program 
given in Figure 8 (1). We will use our modular 
monadic algorithm to compute the dynamic slice with 
respect to <(a=0, n=2), 12, s>. 

We firstly label each expression in the example 
program with a unique label. Here we employ the line 
number of position where the expression occurs in 
source program. The resulting labeled expressions l.e 
and their corresponding set Refs(l.e) are showed in 
Figure 9. 

Then, let INPUT is a=0 and n=2, and execute the 
program with INPUT according to the modular monadic 
semantics that includes the feature of program slicing. 
The following set is corresponding execution list, 
which comprises labels of instructions (i.e. statements 
or their snippets) that are the same order as they have 
been executed: 

 {1, 2, 3, 4, 5, 7, 8, 10, 11, 7, 8, 10, 11, 7, 12 } 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lastly, as stated in monadic dynamic slice algorithm, 

the dynamic slices for associated variables of each 
instruction are computed immediately after this 
instruction is executed. In detail, while instructions in 
the above sequence list are being executed, the initial 
set L and dynamic slice table Slices are modified, 
according to Step 2 and 3 in our algorithm. In other 
words, after a labeled expression is executed, the set L 
is transformed into intermediate set L′ through 
Equation (*), and this new set will be passed down the 
rest of the execution of the corresponding whole 
statement to this expression. Moreover, if this 
statement is an assignment one, the dynamic slice 
Slices need to update through the term xtdSli (ide, L′, 
getSli). 

For instance, at the beginning of executing for first 
time the 10th instruction in above list, the corresponding 
table Slices is showed in Figure 10 (1). At one time, the 
initial set L, passing through executions of the 7th and 
8h instruction, is turned into an intermediate set L′′ as 
follows: 

L′′ = {8} ∪ L′ ∪ lkpSli (a, getSli) = {3, 7, 8} 
where 

L′= {7}∪L ∪ (lkpSli(i, getSli) ∪ lkpSli(n, getSli)) 
= {3, 7} 

After the first 10th instruction is executed, the 
intermediate set is changed to L′′′: 

L′′′ = {10} ∪ L′′ ∪ lkpSli (s, getSli)  
= {10} ∪ {3, 7, 8} ∪{4}  
= {3, 4, 7, 8, 10} 

(1)  Source program                                           (2)  Dynamic slice w.r.t  s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  A sample W-program and its slice w.r.t <(a=0, n=2), 20, s> 

1           read n ; 
2           read a ; 
3           i := 1 ; 
4           s := 1 ; 
5           if (a > 0) then  
6                  s := 0  

else skip endif ; 
7           while (i <= n) do 
8               if (a > 0) then  
9                     s := s + 2  
10             else s := s * 2 endif    
11             i := (i + 1) ; 

endwhile ; 
12         write (s + 4) 

1             read n ; 
2             read a ; 
3             i := 1 ; 
4             s := 1 ; 
 
 
 
7            while (i <= n) do 
8                if (a > 0) then  
 
10             else s := s * 2 endif         
11             i := (i + 1) ; 

endwhile ; 
12         write (s + 4) 

l.  e Refs(l.e) 
3. i := 1 { i } 
4. s := 1 { s } 
5. a > 0 { a } 
6. s := 0 { s } 
7. i <= n { i , n } 
8. a > 0 { a } 
9. s :=s+2 { s } 

10. s :=s*2 { s } 
11. i :=i+1 { i } 
12. s + 4 { s } 

Figure 9.  l.e and Refs(l.e) 



Furthermore, the 10th is an assignment one, so the 
related data in Slices need to update through xtdSli. 
Here L′′′ replaces the dynamic slice of variable s before 
execution, and now the table Slices is given in Figure 
10 (2). Going on in this way until finishing the 
execution of the last instruction (i.e. 12th) in above 
sequence list, we will obtain the final Slices as shown 
in Figure 10 (3). According to it and Syn(s, L), we 
could get the final result of dynamic slice, shown in 

Figure 8 (2), with respect to slice criterion <(a=0,n=2), 
12, s>. 

On the basis of Labra’s language prototyping system 
LPS [23], which facilitates the modular development 
of interpreters from modular monadic semantics, we 
are now developing a monadic slicer [24]. As for this 
example, we can obtain the result (shown in Figure 11) 
from the current monadic slicer, where we didn’t 
consider the function Syn(s, L) and directly include the 
Read and Write statements in the results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Related Work 
 

Most of the existing slicing algorithms rely on 
relation graphs such as system dependence graphs 
(SDG) or program dependence graphs (PDG). A few 
program slicing methods focused on the semantics of 
programs. 

G.Canfora et al.’s conditioned slicing [25] adds a 
condition in a slicing criterion. Statements that do not 

satisfy the condition are deleted from the slice. 
M.Harman et al.’s amorphous slicing [26] allows for 
any simplifying transformations which preserve this 
semantic projection. These two methods are not 
directly based on formal semantics of a program. 
P.A.Hauser’s denotational slicing [7, 8] employs the 
functional semantics of a program language in the 
denotational (and static) program slicer. Venkatesh 
also took account of denotational slicing with formal 
slicing algorithms including dynamic and static [9]. This 
approach is indeed based on the standard denotational 

(1) before execute first 10th      (2) after execute first 10th        (3) after execute the last instruction 
 
 
 
 
 
 
 
  

Figure 10.  Slices during execute instructions with INPUT 
 

Var Labels 
n φ 
a φ 

i {3} 

s {3, 4, 7, 8, 10} 

Var Labels 
n φ 
a φ 

i {3} 

s {4} 

Var Labels 
n φ 
a φ 

i {3, 7, 11} 

s {3, 4, 7, 8, 10, 11} 

READ     1    ds  = [("n",[1])] 
READ     2    ds  = [("n",[1]),("a",[2])] 
ASSIGN  3   ds'  = [("n",[1]),("a",[2]),("i",[3])] 
ASSIGN  4   ds' = [("n",[1]),("a",[2]),("i",[3]),("s",[4])] 
IF             5   ds  = [("n",[1]),("a",[2]),("i",[3]),("s",[4])] 
WHILE    7   ds  = [("n",[1]),("a",[2]),("i",[3]),("s",[4])] 
IF             8   ds  = [("n",[1]),("a",[2]),("i",[3]),("s",[4])] 
ASSIGN  10  ds' = [("n",[1]),("a",[2]),("i",[3]),("s",[1,2,3,4,7,8,10])] 
ASSIGN  11  ds' = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])] 
WHILE    7    ds  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])] 
IF             8    ds  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10])] 
ASSIGN  10  ds'  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])] 
ASSIGN  11  ds'  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])] 
WHILE    7    ds  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11])] 
WRITE    12  ds  = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11,12])] 
Value = Left 8 
DSlices = [("n",[1]),("a",[2]),("i",[1,3,7,11]),("s",[1,2,3,4,7,8,10,11,12])]   
 

Figure 11. The dynamic slicing result from our monadic slicer 



semantics of a program language. Inspired by this, we 
have proposed a new formal method for program 
slicing, called modular monadic slicing, which is 
based on modular monadic semantics.  

Compared with the existing slicing methods, the 
modular monadic slicing has excellent flexibility and 
reusability properties, because it have abstracted the 
computation of program slicing as an language-
independence object, slice monad transformer. The 
modular monadic slicing can compute slices directly 
on abstract syntax, without explicit construction of 
intermediate structures such as data flow graphs or 
dependence graphs in slicers. Despite this, it is still 
feasible, because there is a clear operational 
interpretation of modular monadic semantics, and 
some modular compilers/interpreters using monad 
transformers have already been constructed in [11, 12, 
18, 20, 23, 27].  

In respect of efficiency, our monadic algorithms are 
not less precise than PDG-based ones as shown from the 
example in Section 4. This is because the term L and 
U

)l.e(
),( 

fsRer
getSlirlkpSli

∈

in the definition of L′ can 

accurately capture control dependences and data 
dependences respectively, which are the base of PDG-
based algorithms. According to the complexity analysis 
in Sections 3.3, the space complexity is irrelated to the 
length of the program analyzed/executed; the time 
complexity of each variable is averagely linear, i.e. 
O(n + m). 

 
6. Summaries 

 
Program slicing is an important decomposition 

technique. It can be roughly classified as static slicing 
and dynamic slicing, according to whether they only 
use statically available information or compute those 
statements that influence the value of a variable 
occurrence for a specific program input. It has been 
widely used in many software activities, such as 
software analyzing, understanding, debugging, testing, 
and maintenance. 

In this paper, we have proposed a novel approach 
for program slicing; called it modular monadic 
program slicing as it is based on modular monadic 
semantics. It has excellent flexibility and reusability 
properties comparing with the existing program slicing 
algorithms. Furthermore, it is feasible, because modular 
monadic semantics is executable and some modular 
compilers/interpreters have already been existed. We 
now developed a program-slice prototype based on a 
modular monadic interpreter [23, 24]. 

In our future work, we will consider modular 
monadic slicing in the present of aliasing, pointer and 
array. At the same time, we will complete our 
prototype of monadic slicer and present the 
comparisons with other slicing methods in experiment.  
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