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Abstract

We present a Language Prototyping System that facilitates the modular devel-
opment of interpreters from independent semantic building blocks. The abstract
syntax is modelled as the fixpoint of a pattern functor which can be obtained as
the sum of functors. For each functor we define an algebra whose carrier is the
computational structure. This structure is obtained as the composition of several
monad transformers applied to a base monad, where each monad transformer adds
a new notion of computation. When the abstract syntax is composed from mutually
recursive categories, we use many-sorted algebras. With this approach, the proto-
type interpreters are automatically obtained as a catamorphism over the defined
algebras.

As an example, in this paper, we independently specify an arithmetic evaluator
and a simple logic programming language and combine both specifications to obtain
a logic programming language with arithmetic capabilities.

1 Introduction

Monads were applied by E. Moggi [18] to improve the modularity of traditional
denotational semantics, capturing the intuitive idea of separating values from
computations. P. Wadler [20] popularized the application of monads to the
development of modular interpreters and to encapsulate the Input/Output
features of the purely functional programming language Haskell. In general,
it is not possible to compose two monads to obtain a new monad. However,
using monad transformers [16] it is possible to transform a given monad into
a new monad adding new computational capabilities. The use of monads and
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monad transformers to specify the semantics of programming languages was
called modular monadic semantics in [15].

In a different context, the definition of recursive datatypes as least fix-
points of pattern functors and the calculating properties that can be obtained
by means of folds or catamorphisms led to a complete discipline which could be
named as generic programming [2]. Following that approach, L. Duponcheel
proposed the combined use of folds or catamorphisms with modular monadic
semantics [5] allowing the independent specification of the abstract syntax,
the computational monad and the domain value. In [10,13] we also applied
monadic catamorphisms, which facilitate the separation between recursive
evaluation and semantic specification. In [12] we show that it is possible
to apply this approach to model abstract syntax with several categories. That
approach was followed to model a logic programming language with arithmetic
predicates in [11,14].

There have been several attempts to specify the dynamic semantics of Pro-
log [19,3]. In [7] it is described an axiomatic semantics with equational logic
which will form the basis for the derivation of a backtracking monad trans-
former [8]. That approach is used in [4] to embed logical variables in Haskell
and has been the main inspiration for our encoding of Prolog expressions.

In the paper, it is assumed that the reader has some familiarity with a
modern functional programming language. We use Haskell syntax with some
freedom in the use of mathematical operators.

2 Modular Monadic Semantics

In functional programming, a monad can be defined as a type constructor M
and a pair of polymorphic operations (�=) : M α→ (α→ M β)→ M β and
return : α→ M α which satisfy a number of laws. The intuitive idea is that a
monad M encapsulates a notion of computation and M α can be considered as
a computation M returning a value of type α. In Haskell, the following type
class can be used.

class Monad m
where

return : α → m α
(�=) : m α→ (α→ m β)→ m β
(�) : m α→ m α→ m α
m1�m2 = m1�=λ → m2

It is possible to define special monads for different notions of computa-
tions like exceptions, environment access, state transformers, backtracking,
continuations, Input/Output, non-determinism, etc. Each class of monad has
some specific operations apart from the predefined return and (�=). Table 1
contains some classes of monads with their operations.
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Name Operations

Error handling err : String → M α

Environment Access rdEnv : M Env

inEnv : Env → M α→ M α

State transformer update : (State → State)→ M State

fetch : M State

set : State → M State

Backtracking failure : M α

orElse : M α→ M α→ M α

Table 1
Some classes of monads

When describing the semantics of a programming language using monads,
the main problem is the combination of different classes of monads. It is not
possible to compose two monads to obtain a new monad in general. Never-
theless, a monad transformer T can transform a given monad M into a new
monad T M that has new operations and maintains the operations of M. The
idea of monad transformer is based on the notion of monad morphism that
appeared in Moggi’s work [18] and was later proposed in [16]. The definition
of a monad transformer is not straightforward because there can be some in-
teractions between the intervening operations of the different monads. These
interactions are considered in more detail in [15,16] and in [8] it is shown how
to derive a backtracking monad transformer from its specification. In Haskell,
a monad transformer can be defined using the following multi-parameter type
class.

class (Monad m) ⇒ MonadT T m
where

lift : m α→ T m α

Our system contains a library of predefined monad transformers corre-
sponding to each class of monad and the user can also define new monad trans-
formers. When defining a monad transformer T over a monad M, it is neces-
sary to specify the returnT M and (�=T M) operations, the lift : M α→ T M α
operation transforming any operation in M into an operation in the new monad
TM, and the operations provided for the new monad.

Table 2 presents the definitions of some monad transformers that will be
used in the rest of the paper.
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Error handling

newtype ErrT m α = E { unE : m (Either α String) }
return x = E (return (Left x ))
m�= f = E ((unE m)�= λy . case y of

Left v → unE (f v)
Right e → return (Right e)

lift m = E (m�= λx .return (Left x ))
err msg = E (return (Right msg))

Environment Reader

newtype EnvT Env m α = V { unV : Env → m α }
return x = V (λρ.return x )
m�= f = V (λρ→ unV m ρ�=λv . unV (f v) ρ)
lift m = V (λρ.m�=return)
rdEnv = V return
inEnv ρ x = V (λ .x ρ)

State transformer

newtype StateT State m α = S { unS : State → m (α, State) }
return x = S (λς.return (x , ς))
m�= f = S (λς → unS m ς�=λ(v , ς ′). unS (f v) ς ′)
lift m = S (λς.m�=λx . return(x , ς) )
update f = S (λς.return (ς, f ς))

Backtracking

newtype BackT m α = B { unB : ∀β.((α→ m β → m β)→ m β → m β)}
return x = B (λκ.κ x )
m�= f = B (λκ.(unB m) (λv .unB (f v) κ))
lift m = B (λ κ f → m�=λx → κ x f )
failure = B (λκ→ (λx → x ))
orElse m n = B (λκ f → (unB m) κ ((unB n) κ f ))

Table 2
Some monad transformers with their definitions

3 Generic Programming Concepts

3.1 Functors, Algebras and Catamorphisms

A functor F can be defined as a type constructor that transforms values of
type α into values of type F α and a function mapF : (α→ β)→ F α → F β.
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class Functor f
where

map : (α→ β)→ f α→ f β

The fixpoint of a functor F can be defined as

newtype Fix F = In { out : F (Fix F) }

A recursive datatype can be defined as the fixpoint of a non-recursive
functor that captures its shape.

Example 3.1 The inductive datatype Term defined as

Term , Num Int | Term + Term

can be defined as the fixpoint of the functor T

type T x = Num Int | x + x
type Term = Fix T

Given a functor F, an F-algebra is a function ϕF : F α → α where α is
called the carrier. A fold or catamorphism can be defined as

cata : (Functor f)⇒ (fα→ α)→ Fix f → α)
cata ϕ = ϕ .map (cata ϕ) . out

Example 3.2 We can obtain a simple evaluator for terms defining a T-algebra
whose carrier is the type m Int , where m is, in this case, any kind of monad.

ϕT : (Monad m) ⇒ T (m Int) → (m Int)
ϕT (Num n) = return n
ϕT (t1 + t2) = t1�=λv1.t2�=λv2.return(v1 + v2)

An interpreter of arithmetic terms is obtained as a catamorphism

InterTerm : (Monad m) ⇒ Term → m Int
InterTerm = cata ϕT

3.2 Two-sorted algebras and catamorphisms

The abstract syntax of a programming language is usually composed from
several mutually recursive categories. It is possible to extend the previous
definitions to handle many-sorted algebras. In this section, we present the
theory for n = 2, but it can be defined for any number of sorts [6]. The
following definitions will be used in section 5.
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A bifunctor f is a type constructor that assigns a type f α β to a pair of
types α and β and an operation bimap.

class BiFunctor f
where

bimap : (α → γ)→ (β → δ)→ f α β → f γ δ

The fixpoint of two bifunctors f and g is a pair of values (Fix1 f g,Fix2 f g)
that can be defined as:

newtype Fix1 f g = In1 { out1 : f (Fix1 f g) (Fix2 f g) }
newtype Fix2 f g = In2 { out2 : g (Fix1 f g) (Fix2 f g) }

Given two bifunctors f and g, a two-sorted f, g-algebra is a pair of functions
(ϕ : f α β → α, ψ : g α β → β) where α, β are called the carriers of the two-
sorted algebra.

It is possible to define f, g-homomorphisms and a new category where
(In1, In2) form the initial object. This allows the definition of bicatamor-
phisms as:

cata2
1 : (Bifunctor f,Bifunctor g) ⇒

(f α β → α)→ (g α β → β)→ Fix1 f g→ α
cata2

1 ϕ ψ = ϕ . bimap (cata2
1 ϕ ψ) (cata2

2 ϕ ψ) . out1

cata2
2 : (Bifunctor f,Bifunctor g)⇒

(f α β → α)→ (g α β → β)→ Fix2 f g→ β
cata2

2 ϕ ψ = ψ . bimap (cata2
1 ϕ ψ) (cata2

2 ϕ ψ) . out2

The sum of two bifunctors f and g is a new bifunctor S2 f g

newtype S2 f g α β = S2 (Either (f α β) (g α β))

instance (Bifunctor f, Bifunctor g)⇒ Bifunctor (S2 f g)
where

bimap f g (Left x ) = Left (bimap f g x )
bimap f g (Right x ) = Right (bimap f g x )

Two-sorted algebras can be extended using the following operators

(�1) : (f α β → α)→ (g α β → α)→ S2 f g α β → α
(φ1 �1 φ2) (S2 (Left x )) = φ1 x
(φ2 �1 φ2) (S2 (Right x )) = φ2 x

(�2) : (f α β → β)→ (g α β → β)→ (S2 f g) α β → β
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(ψ1 �2 ψ2) (S2 (Left x )) = ψ1 x
(ψ2 �2 ψ2) (S2 (Right x )) = ψ2 x

3.3 From functors to bifunctors

When specifying several programming languages, it is very important to be
able to share common blocks and to reuse the corresponding specifications. In
order to reuse specifications made using single-sorted algebras in a two-sorted
framework, it is necessary to extend functors to bifunctors.

Given a functor f, we define the bifunctors P2
1 f and P2

2 f as:

newtype P2
1 f α β = P2

1 (f α)
newtype P2

2 f α β = P2
2 (f β)

where the bimap operations are defined as

instance Functor f ⇒ Bifunctor (P2
1 f)

where
bimap f g (P2

1 x ) = P2
1 (map f x )

instance Functor f ⇒ Bifunctor (P2
2 f)

where
bimap f g (P2

2 x ) = P2
2 (map g x )

Given a single sorted algebra, the following operators ε21 and ε22 obtain the
corresponding two-sorted algebras

ε21 : (f α→ α)→ P2
1 f α β → α

ε21 ϕ (P2
1 x ) = ϕ x

ε22 : (f β → β)→ P2
2 f α β → β

ε22 ϕ (P2
2 x ) = ϕ x

4 Specification of Pure Prolog

4.1 Syntactical Structure

Prolog terms are defined as

data Term = C Name — Constants
| V Name — Variables
| F Name [Term] — Compound terms
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Facts and rules will be represented as local declarations, leaving the goal
as an executable expression. We will use the functor P to capture the abstract
syntax of the language. Our abstract syntax assumes all predicates to be
unary, this simplifies the definition of the semantics without loss of generality.

data P e = Def Name Name e e — Definitions
| e ∧ e — Conjunction
| e ∨ e — Disjunction
| ∃(Name → e) — Free variables
| call Name Term — Predicate call
| Term $ Term — Unification
| ?Name (Name → e) — Goal

The Prolog language is defined as the fixed point of P

type Prolog = Fix P

Example 4.1 The Prolog program

p(a).
p(f (x ))← p(x )

with the goal ? p(x ) can be codified as

Def p v (v $ a ∨ ∃(λx .v $ f (x ) ∧ call p x )) (?x (λx .call p x ))

4.2 Unification

In this section we present an algorithm adapted from [9] where a polytipic uni-
fication algorithm is developed. In that paper, genericity is obtained through
the definition of type classes and the corresponding instance declarations. We
omit those declarations for brevity and just assume that we have the following
functions:

isVar : Term → Bool — Checks if a term is a variable
topEq : Term → Term → Bool — Checks top equality of two terms
args : Term → [Term] — list of arguments of a term

A substitution could be represented as an abstract datatype Subst with
the following operations:

lkpS : Name → Subst → Maybe Term — lookup
updS : Name → Term → Subst → Subst — update

where Maybe is the predefined datatype:
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data Maybe α = Just α | Nothing

The unification algorithm will be:

unifyS : Term → Term → Subst → Comp Subst
unifyS t1 t2 σ | isVar t1 ∧ isVar t2 ∧ t1 == t2 = return σ

| isVar t1 = bind t1 t2 σ
| isVar t2 = bind t2 t1 σ
| topEq t1 t2 = uniTs t1 t2 σ
| otherwise = failure

uniTs : Term → Term → Subst → Comp Subst
uniTs t1 t2 σ = foldr f (return σ) (zip (args t1) (args t2))

where
f (a1, a2) r = r �=λσ′ → unifyS a1 a2 σ

′

bind : Name → Term → Subst → Comp Subst
bind v t σ = case lkpS v σ of

Nothing → return (updS v t σ)
Just t ′ → unifyS t t ′ σ�=λσ′.

return(updS v t σ′)

4.3 Computational Structure

The computational structure will be described by means of a monad, which
must support the different operations needed. In this sample language, we
need to handle errors, backtracking, environment access and to modify a global
state. The global state in this simple case is only needed as a supply of fresh
variable names. The resulting monad will be

type Comp = BackT (EnvT Env (StateT State (ErrT IO)))

we used the predefined IO monad as the base monad in order to facilitate
the communication of solutions to the user. In this simple case, we use the
following domains

type Subst = Name → Term — Substitutions
type Database = Name → (Name,Comp Subst) — Clause Definitions
type Env = (Database, Subst) — Environment
type State = Int — Global state
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4.4 Semantic Specification

The semantic specification of the Prolog language consist of a P-algebra whose
carrier is the computational structure.

ϕP : P (Comp Value)→ Comp Value
ϕP (Def p x e1 e2) = rdEnv�=λ(ρ, σ).

inEnv (updEnv ρ p (x , e1)) e2

ϕP (e1 ∧ e2) = rdEnv�=λ(ρ, σ).
e1�=λσ′.
inEnv (ρ, σ′) e2

ϕP (e1 ∨ e2) = rdEnv�=λ(ρ, σ).
orElse (inEnv (ρ, σ) e1) (inEnv (ρ, σ) e2)

ϕP (∃ f ) = update (+1)�=λ.f (mkFree n)

ϕP (call p t) = rdEnv�=λ(ρ, σ).
let (x ,m) = ρ (p, t)
in unifyS (C x ) t σ�=λσ′ → inEnv (ρ, σ′) m

ϕP (t1 $ t2) = rdEnv�=λ(ρ, σ).
unifyS t1 t2 σ

ϕP (? x f ) = update (+1)�=λn.
f (mkFree n)�=λσ.
putAnswer x (σ v))�=λ .
return σ

The following auxiliary definitions have been used

• mkFree : Int → Name, creates a new name

• putAnswer : Name → Term → Comp (), writes the value of a variable and
asks the user for more answers.

• updEnv : Env → Name → (Name,Comp Subst)→ Env , return an environ-
ment with a new value for a given predicate.

The Prolog interpreter is automatically obtained as a catamorphism

InterProlog : Prolog → Comp Subst
InterProlog = cata ϕP
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5 Adding Arithmetic

The Prolog predicate (is) opens a new semantic world in the language as it
implies the arithmetic evaluation of one of its arguments. Other specifications
of Prolog [19,3] often avoid this predicate as it can interfere with the under-
standing of the particular aspects of Prolog. In our approach, it is possible to
reuse the independent specifications of pure logic programming and arithmetic
evaluation and combine them to form a new language.

As we are going to use two different categories, we define the bifunctor

data Is g e = Is Term e

and the semantic specification

ϕIs : Is (Comp Subst) (Comp Int)→ Comp Subst
ϕIs (Is t e) = e�=λv .

rdEnv�=λ(ρ, σ).
unifyS t (cnv v) σ

where cnv : Int → Term converts an integer into a constant term.

The extended language can be defined as

type Prolog+ = Fix1 (S2 (P2
1 P) Is) (P2

2 T)

and the corresponding interpreter is obtained as a bicatamorphism

InterProlog+ : Prolog+ → Comp Subst
InterProlog+ = cata2

1 (ε21 ϕP �1 ϕI) (ε22 ϕT)

6 Conclusions and future work

The integration of modular monadic semantics and generic programming con-
cepts provides a very modular way to specify programming languages from
reusable semantic building blocks.

The traditional way to modularize the development of a language processor
consist in the identification of the main processes involved: lexical analysis,
syntactic analysis, static analysis, evaluation, etc. It is very difficult to identify
the code corresponding, for example, to arithmetic expressions and to reuse
that code in the development of a processor for a different language. In our
approach we independently specify the kernel of a logic programming language
and a simple arithmetic expressions block and integrate both to obtain a logic
programming with arithmetic capabilities language. The arithmetic expres-
sions block can be reused in a different language without change. Indeed,
we have developed specifications of imperative [12], functional [10,13], object-
oriented [14] and logic programming languages [11]. The specifications have
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been made in a modular way by reusing common blocks. With this approach
the language designer only needs to concentrate on a particular feature, which
can be included and tested in automatically obtained language prototypes.

Moreover, the computational structure of the logic programming language
is obtained from the composition of several monad transformers which incre-
mentally add new notions of computation. It would be straightforward to add
control facilities like negation or cut by modifying these monad transform-
ers [8].

We have implemented a Language Prototyping System in Haskell. The
implementation offers an interactive framework for language testing and is
based on a domain-specific meta-language embedded in Haskell. This ap-
proach offers easier development and the fairly good type system of Haskell.
Nevertheless, there are some disadvantages like the mixture of error messages
between the host language and the metalanguage, Haskell dependency and
some type system limitations. We are currently planning to develop an inde-
pendent meta-language. Some work in this direction has been done in [17].

With regard to the current implementation, we have also made a simple
version of the system using first-class polymorphism and extensible records.
This allows the definition of monads as first class values and monad transform-
ers as functions between monads without the need of type classes. However,
this feature is still not fully implemented in current Haskell systems.

This paper is a first attempt to model logic programming languages in this
approach. Future work can be done in the specification of other features and
in the integration between different modules leading to cross-paradigm pro-
gramming language designs. More information on the system can be obtained
at [1].
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